
CS 416: Operating Systems Design March 25, 2015

© 2014-2015 Paul Krzyzanowski 1

Operating Systems

14. File System Implementation

Paul Krzyzanowski

Rutgers University

Spring 2015

1 3/25/2015 © 2014-2015 Paul Krzyzanowski

File System Implementation

2

File System Design Challenge

How do we organize a hierarchical file system on an array

of blocks?

... and make it space efficient & fast?

Directory organization

• A directory is just a file containing names & references

– Name (metadata, data) Unix (UFS) approach

– (Name, metadata) data MS-DOS (FAT) approach

• Linear list

– Search can be slow for large directories.

– Cache frequently-used entries

• Hash table

– Linear list but with hash structure

– Hash(name)

• More complex structures: B-Tree, Htree

– Balanced tree, constant depth

– Great for huge directories

4

Block allocation: Contiguous

• Each file occupies a set of adjacent blocks

• You just need to know the starting block & file length

• We’d love to have contiguous storage for files!

– Minimizes disk seeks when accessing a file

5

Problems with contiguous allocation

• Storage allocation is a pain (remember main memory?)

– External fragmentation: free blocks of space scattered throughout

– vs. Internal fragmentation: unused space within a block (allocation unit)

– Periodic defragmentation: move entire files (yuck!)

• Concurrent file creation: how much space do you need?

• Compromise solution: extents

– Allocate a contiguous chunk of space

– If the file needs more space, allocate another chunk (extent)

– Need to keep track of all extents

– Not all extents will be the same size: it depends how much contiguous

space you can allocate

6

CS 416: Operating Systems Design March 25, 2015

© 2014-2015 Paul Krzyzanowski 2

Block allocation: Linked Allocation

• A file’s data is a linked list of disk blocks

– Directory contains a pointer to the first block of the file

– Each block contains a pointer to the next block

• Problems

– Only good for sequential access

– Each block uses space for the pointer to the next block

• Clusters

– Multiples of blocks: reduce overhead for block pointer & improve throughput

– A cluster is the smallest amount of disk space that can be allocated to a file

– Penalty: increased internal fragmentation

Block 15 Block 200 Block 8

Cluster 203 Cluster 199 Cluster 338

7

File Allocation Table (DOS/Windows FAT)

• Variation of Linked Allocation

• Section of disk at beginning of the volume contains a file allocation

table

• The table has one entry per block. Contents contain

the next logical block (cluster) in the file.

0 0

Clusters

01

02

03

04

05

06

07

08

09

10

11

12

13

14

0 12 0 0 03 0 0 0 0 0 -1 0

00

myfile.txt 06 Directory entry:

• FAT-16: 16-bit block pointers
– 16-bit cluster numbers; up to 64 sectors/cluster

– Max file system size = 2 GB (with 512 byte sectors)

• FAT-32: 32-bit block pointers
– 32-bit cluster numbers; up to 64 sectors/cluster

– Max file system size = 8 TB (with 512 byte sectors)

– Max file size = 4 GB

FAT table: one per file system

metadata

8

Indexed Allocation (Block map)

• Linked allocation is not efficient for random access

• FAT requires storing the entire table in memory for

efficient access

• Indexed allocation:

– Store the entire list of block pointers for a file in one place: the

index block (inode)

– One inode per file

– We can read this into memory when we open the file

9

Indexed Allocation (block/cluster map)

• Directory entry contains name and inode number

• inode contains file metadata (length, timestamps, owner, etc.)

and a block map

• On file open, read the inode to get the index map Clusters

01

2nd file block

1st file block

3rd file block

02

03

04

05

06

07

08

09

10

11

12

13

14

06

03

12

00

myfile.txt 99 Directory entry:

inode 99

m
e

ta
d

a
ta

10

Combined indexing (Unix File System)

• We want inodes to be a fixed size

• Large files get

– Single indirect block

– Double indirect block

– Triple indirect block

10 Direct block pointers

Direct block

Single Indirect block

Direct block

Indirect block
Double indirect block

Triple indirect block

Data block Data block

Data block

#entries =

block size/(4 bytes per block pointer)

11

Combined Indexing: inside the inode

• Direct block numbers

– These contain block numbers that contain the file’s data. Having these

gives us direct access to the file’s data.

• Indirect block number

– This is a block number of a block that contains a list of direct block

numbers. Each block number is the number of a block that contains the

file’s data.

• Double indirect block number

– This refers to a block that contains a list of indirect block numbers. Each

indirect block number is the number of a block that contains a list of direct

block numbers

• Triple indirect block number

– This refers to a block that contains a list of double indirect block numbers.

Each double indirect block number is the number of a block that contains a

list of indirect direct block numbers. Each of these contains a list of direct

block numbers

12

CS 416: Operating Systems Design March 25, 2015

© 2014-2015 Paul Krzyzanowski 3

Example

• Unix File System

– 1024-byte blocks, 32-bit block pointers

– inode contains

• 10 direct blocks, 1 indirect, 1 double-indirect, 1 triple indirect

• Capacity

– Direct blocks will address: 1K × 10 blocks = 10,240 bytes

– 1 Indirect block: additional (1K/4)×1K = 256K bytes

– 1 Double indirect block: additional (1K/4) × (1K/4) × 1K = 64M bytes

– 1 Triple indirect block: additional (1K/4) × (1K/4) × (1K/4) × 1K = 16G bytes

– Maximum file size = 10,240 + 256K + 64M + 16G =

 = 17247250432 bytes ≈ 16G bytes

13

Extent lists

• Extents: Instead of listing block addresses

– Each address represents a range of blocks

– Contiguous set of blocks

– E.g., 48-bit block # + 2-byte length (total = 64 bits)

• Why are they attractive?

– Fewer block numbers to store if we have lots of contiguous

allocation

• Problem: file seek operations

– Locating a specific location requires traversing a list

– Extra painful with indirect blocks

14

Unix File System (UFS)

inodes with direct, indirect, double-indirect, and triple-indirect blocks

10 Direct block pointers

Direct block

Single Indirect block

Direct block

Indirect block
Double indirect block

Triple indirect block

Data block Data block

Data block

entries =

block size/(4 bytes per block pointer)

superblock inodes Data blocks

15

Unix File System (UFS)

Superblock contains:

– Size of file system

– # of free blocks

– list of free blocks (+ pointer to free block lists)

– index of the next free block in the free block list

– Size of the inode list

– Number of free inodes in the file system

– Index of the next free inode in the free inode list

– Modified flag (clean/dirty)

16

Unix File System (UFS)

• Free space managed as a linked list of blocks

– Eventually this list becomes random

– Every disk block access will require a seek!

• Fragmentation is a big problem

• Typical performance was often:

 2–4% of raw disk bandwidth!

17

BSD Fast File System (FFS)

• Try to improve UFS

• Improvement #1: Use larger blocks

– ≥ 4096 bytes instead of UFS’s 512-byte or 1024-byte blocks

• Block size is recorded in the superblock

– Just doubling the block size resulted in > 2x performance!

– 4 KB blocks let you have 4 GB files with only two levels of indirection

– Problem: increased internal fragmentation

• Lots of files were small

• Solution: Manage fragments within a block (down to 512 bytes)

– A file is 0 or more full blocks and possibly one fragmented block

– Free space bitmap stores fragment data

– As a file grows, fragments are copied to larger fragments and then to a full block

– Allow user programs to find the optimal block size

 Standard I/O library and others use this

– Also, avoid extra writes by caching in the system buffer cache

18

CS 416: Operating Systems Design March 25, 2015

© 2014-2015 Paul Krzyzanowski 4

BSD Fast File System (FFS)

• Improvement #2: Minimize head movement (reduce seek time)

– Seek latency is usually much higher than rotational latency

– Keep file data close to its inode to minimize seek time to fetch data

– Keep related files & directories together

– Cylinder: collection of all blocks on the same track on all heads of a disk

– Cylinder group: Collection of blocks on one or more consecutive cylinders

superbloc

k
inodes Data blocks UFS:

FFS: Cylinder

group 1

Cylinder

group 2

Cylinder

group 3

Cylinder

group 4

Cylinder

group 5

Cylinder

group 6

Cylinder

group 7

Cylinder group: Superblock

(redundant)
inode table Data blocks

FS

descriptors

Block

bitmap

inode

bitmap

19

How do you find inodes?

• UFS was easy – to get block # for and inode:

inodes_per_block = sizeof(block) / sizeof(inode)

inode_block = inode / inodes_per_block

block_offset = (inode % inodes_per_block) * sizeof(inode)

• FFS

– We need to know how big each chunk of inodes in a cylinder group

is: keep a table

20

BSD Fast File System (FFS)

• Optimize for sequential access

• Allocate data blocks that are close together

– Pre-allocate up to 8 adjacent blocks when allocating a block

• Achieves good performance under heavy loads

• Speeds sequential reads

• Prefetch

– If 2 or more logically sequential blocks are read

• Assume sequential read and request one large I/O on the entire range of

sequential blocks

– Otherwise, schedule a read-ahead

21

BSD Fast File System (FFS)

• Improve fault tolerance

– Strict ordering of writes of file system metadata

– fsck still requires up to five passes to repair

– All metadata writes are synchronous (not buffered)

– This limits the max # of I/O operations

• Directories

– Max filename length = 256 bytes (vs. 12 bytes of UFS)

• Symbolic links introduced

– Hard links could not point to directories and worked only within the FS

• Performance:

– 14-47% of raw disk bandwidth

– Better than the 2-5% of UFS

22

Linux ext2

• Similar to BSD FFS

• No fragments

• No cylinder groups (not useful in modern disks) – block groups

• Divides disk into fixed-size block groups

– Like FFS, somewhat fault tolerant: recover chunks of disk even if some parts are not

accessible

ext2: Block group

1

Block group

2

Block group

3

Block group

4

Block group

5

Block group

6

Block group

7

Block group: Superblock

(redundant)
inode table Data blocks

Block

bitmap

inode

bitmap

23

Linux ext2

inodes with direct, indirect, double-indirect, and triple-indirect blocks

12 Direct block pointers

Direct block

Single Indirect block

Direct block

Indirect block
Double indirect block

Triple indirect block

Data block Data block

Data block

entries =

block size/(4 bytes per block pointer)

24

CS 416: Operating Systems Design March 25, 2015

© 2014-2015 Paul Krzyzanowski 5

Linux ext2

• Improve performance via aggressive caching

– Reduce fault tolerance because of no synchronous writes

– Almost all operations are done in memory until the buffer cache gets flushed

• Unlike FFS:

– No guarantees about the consistency of the file system

• Don’t know the order of operations to the disk: risky if they don’t all complete

– No guarantee on whether a write was written to the disk when a system call

completes

• In most cases, ext2 is much faster than FFS

25

Journaling

26

Consistent Update Problem

Example:

• Writing a block to a file may require:

– inode is

• updated with a new block pointer

• Updated with a new file size

– Data free block bitmap is updated

– Data block contents written to disk

• If all of these are not written, we have a file system inconsistency

consistent file

system
bunch of updates

consistent file

system

Don’t crash here!

27

Journaling

• Journaling = write-ahead logging

• Keep a transaction-oriented journal of changes

– Record what you are about to do (along with the data)

– Once this has committed to the disk then overwrite the real data

– If all goes well, we don’t need this transaction entry

– If a crash happens any time after the log was committed

 Replay the log on reboot (redo logging)

• This is called full data journaling

Transaction-begin

 New inode 779

 New block bitmap, group 4

 New data block 24120

Transaction-end

28

Writing the journal

• Writing the journal all at once would be great but is risky

– We don’t know what order the disk will schedule the block writes

– Don’t want to risk having a “transaction-end” written while the contents of

the transaction have not been written yet

– Write all blocks except transaction-end

– Wait for the writes to complete

– Then write transaction-end

• If the log is replayed and a transaction-end is missing, ignore the log

entry

29

jwrite(“Transaction-begin”)

jwrite(“New inode 779”)

jwrite(“New block bitmap, group 4”)

jwrite(“New data block 24120”)

jwrite(“Transaction-end”)

wait for writes to complete

Cost of journaling

• We’re writing everything twice

 …and constantly seeking to the journal area of the disk

• Optimization

– Do not write user data to the journal

– Metadata journaling (also called ordered journaling)

• What about the data?

– Write it to the disk first (not in the journal)

– Then mark the end of the transaction

– This prevents pointing to garbage after a crash and journal replay

Transaction-begin

 New inode 779

 New block bitmap, group 4

Transaction-end

30

CS 416: Operating Systems Design March 25, 2015

© 2014-2015 Paul Krzyzanowski 6

Linux ext3

• ext3 = ext2 + journaling (mostly)

• Goal: improved fault recovery

– Reduce the time spent in checking file system consistency &

repairing the file system

31

ext3 journaling options

• journal

– full data + metadata journaling

– [slowest]

• ordered

– Data blocks written first, then metadata journaling

– Write a transaction-end only when the other writes have completed

• writeback

– Metadata journaling with no ordering of data blocks

– Recent files can get corrupted after a crash

– [fastest]

32

ext3 layout

ext2: Block group

1

Block group

2

Block group

3

Block group

4

Block group

5

Block group

6

Block group

7

Block group: Superblock

(redundant)
inode table Data blocks

Block

bitmap

inode

bitmap
journal

The journal is new.

Everything else is from ext2.

ext3 also supports HTree structure for

directory entries up to 32,000 entries

33

Linux ext4: extensions to ext3

• Large file system support

– 1 exabyte (1018 bytes); file sizes to 16 TB

• Extents used instead of block maps: less need for indirect blocks

– Range of contiguous blocks

– 1 extent can map up to 12 MB of space (4 KB block size)

– 4 extents per inode. Additional ones are stored in an HTree (constant-

depth tree similar to a B-tree)

• Ability to pre-allocate space for files

– Increase chance that it will be contiguous

• Delayed allocation

– Allocate on flush – only when data is written to disk

– Improve block allocation decisions because we know the size

34

Linux ext4: extensions to ext3

• Over 64,000 directory entries (vs. 32,000 in ext3)

– HTree structure

• Journal checksums

– Monitor journal corruption

• Faster file system checking

– Ignore unallocated block groups

• Interface for multiple-block allocations

– Increase contiguous storage

• Timestamps in nanoseconds

35

Microsoft NTFS

• Standard file system for Windows; successor to FAT-32

• 64-bit volume sizes, journaling, and data compression

• Cluster-based (file compression not supported on clusters > 4 KB)

NTFS

boot

sector

Master File

Table
File System Data

Master File

table Copy

Boot Sector: info about layout of the volume & FS structures; Windows bootloader

MFT: contains information about all files in the file system

File system data: all the data that is not in the MFT

MFT Copy: copy of critical part of MFT for recovery (first 4 records)

36

CS 416: Operating Systems Design March 25, 2015

© 2014-2015 Paul Krzyzanowski 7

NTFS Master File Table

• The MFT is itself a file (starting at a well-known place)

• It contains file records (inode) for all files, including itself

– B-Tree structure

• MFT Special files:

 MFT record 0 $Mft Master file table

MFT record 1 $MftMirr Duplicate of 1st 4 records of MFT

MFT record 2 $LogFile Metadata journal for recovery

MFT record 3 $Volume Info about the file system volume

MFT record 4 $AttrDef Attribute definitions

MFT record 5 Root folder

MFT record 6 $Bitmap Cluster bitmap (free/used clusters)

And a few more less interesting ones…

• Because the Bitmap is just a file, the volume bitmap is a file, the size of a

volume can be easily expanded

37

NTFS MFT & Attributes

• MFT can grow just like any other file

– To minimize fragmentation, 12.5% of the volume is reserved for use by the MFT

(“MFT Zone”)

• Each file record is 1, 2, or 4 KB (determined at FS initialization)

• File record info: set of typed attributes

– Some attributes may have multiple instances (e.g., name & MS-DOS name)

– Resident attributes: attributes that fit in the MFT record

– If the attributes take up too much space, additional clusters are allocated

• an “Attribute List” attribute is added

• Describes location of all other file records

• Attributes stored outside of the MFT record are Nonresident attributes

38

NTFS File Data

• File data is an attribute

– NTFS supports multiple data attributes per file

– One main, unnamed stream associated with a data file; other

named streams are possible

– Manage related data as a single unit

• Small folders and small data files can fit entirely within the

MFT.

– Large folders are B-tree structures and point to external clusters

• Block allocation: via extents

39

Microsoft NTFS

• Directories

– Stored as B+ trees in alphabetic order

– Name, MFT location, size of file, last access & modification times

– Size & times are duplicated in the file record & directory entry

• Designed top optimize some directory listings

• Write-ahead logging

– Writes planned changes to the log, then writes the blocks

• Transparent data compression of files

– Method 1:

Compress long ranges of zero-filled data by not allocating them to blocks

(sparse files)

– Method 2:

Break file into 16-block chunks

• Compress each chunk

• If at least one block is not saved then do not compress the chunk

40

Latest MS file system: ReFS

• ReFS = Resilient File System for Windows Server 2012

• Goals

– Verify & auto-correct data; checksums for metadata

– Optimize for extreme scale

– Never take the file system offline – even in case of corruption

– Allocate-on-write transactional model

– Shared storage pools for fault tolerance & load balancing

– Data striping for performance; redundancy for fault tolerance

• General approach

– Use B+ trees to represent all information on the disk

• “Table” interface for enumerable sets of key-value pairs

– Provide a generic key-value interface to implement files, directories, and all

other structures

41

The End

3/25/2015 42 © 2014-2015 Paul Krzyzanowski

