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Page table 

• One page table per process 

– Contains page table entries (PTEs) 

 

• Each PTE contains 

– Corresponding page frame # for a page # 

– Permissions 

• Permissions (read-only, read-write, execute-only, privileged access only…) 

– Access flags 

• Valid?   Is the page mapped? 

• Modified? 

• Referenced? 

 

• Page table is selected by setting a page table base register 

with the address of the table 
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Accessing memory 

• CPU starts in physical addressing mode 

– Someone has to set up page tables 

– Divide address space into user & kernel spaces 

– Switch to Virtual addressing mode  

 

• Each process makes virtual address references for all memory 

access 

 

• MMU converts to physical address via a per-process page table 

– Page number  Page frame number 

– Page fault  trap if not a valid reference 
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Improving look-up performance: TLB 

• Cache frequently-accessed pages 

– Translation lookaside buffer (TLB) 

– Associative memory: key (page #) and value (frame #) 

 

• TLB is on-chip & fast … but small (64 – 1,024 entries) 

• TLB miss: result not in the TLB 

– Need to do page table lookup in memory 

• Hit ratio = % of lookups that come from the TLB 

• Address Space Identifier (ASID): share TLB among 

address spaces 
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Page-Based Virtual Memory Benefits 

• Allow discontiguous allocation 

– Simplify memory management for multiprogramming 

– MMU gives the illusion of contiguous allocation of memory 

 

• Process can get memory anywhere in the address space 

– Allow a process to feel that it has more memory than it really has 

– Process can have greater address space than system memory 

 

• Enforce memory Protection 

– Each process’ address space is separate from others 

– MMU allows pages to be protected: 

• Writing, execution, kernel vs. user access 
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Kernel’s view of memory 

• A process sees a flat linear address space 

– Accessing regions of memory mapped to the kernel causes a page fault 

• Kernel’s view: 

– Address space is split into two parts 

• User part: changes with context switches 

• Kernel part: remains constant across context switches 

– Split is configurable:  

• 32-bit x86: PAGE_OFFSET: 3 GB for process + 1 GB kernel 

Process memory 

(context-specific) 

(3 GB) 

Kernel memory 

(1 GB) 

0xffffffff 

0x00000000 

Process memory 

(context-specific) 

(2 GB) 

Kernel memory 

(2 GB) 

(8 TB on 64-bit) 

0xffffffff 

0x00000000 

0x80000000 

0xc0000000 
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Sample memory map per process 

• Interrupt stack 

• Data 

• Text (code) 

argv, envp 

user stack 

heap 

data 

text 

kernel 

User process 

A lot of unused space! 
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Multilevel (Hierarchical) page tables 

• Most processes use only a small part of their address 

space 

 

• Keeping an entire page table is wasteful 

– 32-bit system with 4KB pages: 20-bit page table 

 ⇒ 220 = 1,048,576 entries in a page table 
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Virtual memory makes memory sharing easy 

Sharing is by page granularity 

11 

Shared library or 

Shared memory 
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Virtual memory makes memory sharing easy 

Sharing is by page granularity. 

Keep reference counts! 

12 3/9/2015 © 2014-2015 Paul Krzyzanowski  



Copy on write 

• Share until a page gets modified 

• Example: fork() 

– Set all pages to read-only 

– Trap on write 

– If legitimate write 

• Allocate a new page and copy contents from the original 
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MMU Example: ARM 
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ARMv7-A architecture 

• Cortex-A8 

– iPhone 3GS, iPod Touch 3G, Apple A4 processor in iPhone 4 & 

iPad, Droid X, Droid 2, etc.) 

• Cortex-A9 

– Multicore support 

– TI OMAP 44xx series, Apple A5 processor in iPad 2 

• Apple A6 

– 32-bit AMD Cortex-A15 processor 

– Used in iPhone 5, 5C, 4th gen iPad 

• Apple A7 

– 64-bit ARMv8-A architecture 

– Used in iPhone 5S, 2nd gen iPad mini, iPad Air 
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Pages 

Four page (block) sizes: 

– Supersections: 16MB memory blocks 

– Sections:            1MB memory blocks 

– Large pages:   64KB memory blocks 

– Small pages:       4KB memory blocks 
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Two levels of tables 

• First level table (aka translation tables) 

– Base address, descriptors, and translation properties for sections 

and supersections (1 MB & 16 MB blocks) 

– Translation properties and pointers to a second level table for large 

and small pages (4 KB and 64 KB pages) 

• Second level tables (aka page tables) 

– Each contains base address and translation properties for small 

and large pages 

 

• Benefit: a large region of memory can be mapped using a 

single entry in the TLB (e.g., OS) 
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ARM Page Tables 

1st level table 
(per process) 

2nd level tables 
(set per process) 

base 
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TLB 

• 1st level: MicroTLB – one each for instruction & data sides 

– 32 entries (10 entries in older v6 architectures) 

– Address Space Identifier (ASID) [8 bits] and Non-Secure Table Identifier 

(NSTID) [1 bit]; entries can be global 

– Fully associative; one-cycle lookup 

– Lookup checks protection attributes: may signal Data Abort 

– Replacement either Round-Robin (default) or Random 

 

• 2nd level: Main TLB – catches cache misses from microTLBs 

– 8 fully associative entries (may be locked) + 64 low associative entries 

– variable number of cycles for lookup 

– lockdown region of 8 entries (important for real-time) 

– Entries are globally mapped or associated ASID and NSTID 
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ARM Page Tables 

1st level table 
(per process) 

2nd level tables 
(set per process) 

base 

One of two base registers (TTBR0/TTRBR1) is used 

If N most significant bits of virtual address are 0 

 then use TTBR0 

 else use TTBR1 

N is defined by the Translation Table Base Control Register (TTBCR) 

Data 

MicroTLB 

Instruction 

MicroTLB 

Main TLB 

(3) Translation table walk 

(2) Main TLB lookup 

(1) MicroTLB lookup 
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Translation flow for a section (1 MB) 

Virtual address Table index (12 bits) 

31 20 19 0 

Section offset (20 bits) 

Physical section = read [Translation table base + table index] 

Physical address = physical section : section offset 

 

Real address Physical section (12 bits) 

31 20 19 0 

Section offset (20 bits) 
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Translation flow for a supersection (16 MB) 

Virtual address Table index (8 bits) 

31 24 23 12 11 0 

Supersection offset (24 bits) 

Supersection base address, Extended base address = 

        read [Translation table base + table index] 

Real address = Extended base address : physical section : section offset 

 

Real 

address 
Extended base 

address (8 bits) 

Supersection base 

address (8 bits) 

39 32 31 24 23 0 

Supersection offset (24 bits) 

40 bit address 

(1 TB) 
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Translation flow for a small page (4KB) 

Virtual address First level index (12 bits) 
Second-level index 

(8 bits) 

31 20 19 12 11 0 

Page offset (12 bits) 

Page table address = read [Translation table base + first-level index] 

Physical page = read[page table address + second-level index] 

Real address = physical page : page offset 

 

Real address Physical page (20 bits) 

31 12 11 0 

Page offset (12 bits) 
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Translation flow for a large page (64KB) 

Virtual address First level index (12 bits) 
Second-level 

index (4 bits) 

31 20 19 16 15 0 

Page offset (16 bits) 

Page table address = Read [Translation table base + first-level index] 

Physical page = read[page table address + second-level index] 

Physical address = physical page : page offset 

 

Real address Physical page (16 bits) 

31 16 15 0 

Page offset (16 bits) 

24 3/9/2015 © 2014-2015 Paul Krzyzanowski  



Memory Protection & Control 

• Domains 

– Clients execute & access data within a domain. Each access is checked 

against access permissions for each memory block 

• Memory region attributes 

– Execute never 

– Read-only, read/write, no access 

• Privileged read-only, privileged & user read-only 

– Non-secure (is this secure memory or not?) 

– Sharable (is this memory shared with other processors) 

• Strongly ordered (memory accesses must occur in program order) 

• Device/shared, device/non-shared 

• Normal/shared, normal/non-shared 

• Signal Memory Abort if permission is not valid for access 
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MMU Example: x86-64 
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IA-32 Memory Models 

• Flat memory model 

– Linear address space 

– Single, contiguous address space 

 

• Segmented memory model 

– Memory appears as a group of independent address spaces: segments 

(code, data, stack, etc.) 

– Logical address = {segment selector, offset} 

– 16,383 segments; each segment can be up to 232 bytes 

 

• Real mode 

– 8086 model 

– Segments up to 64KB in size 

– maximum address space: 220 bytes 
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Segments 

• Each segment may be up to 4 GB 

• Up to 16 K segments per process 

• Two partitions per process 

– Local: private to the process 

• Up to 8 K segments 

• Info stored in a Local Descriptor Table (LDT) 

– Global: shared among all processes 

• Up to 8 K segments 

• Info stored in a Global Descriptor Table (GDT) 

• Logical address is (segment selector, offset) 

– Segment selector = 16 bits: 

• 13 bits segment number + 1 bit LDT/GDT ID + 2 bits protection 
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Segment 

Descriptor 

IA-32 Segmentation & Paging 

16 bits 

Segment 

selector Offset 

32 bits 

Global Descriptor 

Table (GDT) 

Segment 

Descriptor 

Linear Address 

Space 

Logical Address 

(Far Pointer) 

Segment 

base 

address 

Linear Addr 

+ 

segment 

page 
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Page Directory 

Entry 

Page Table 

Entry 
+ 

Physical 

Address Space 
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+ 

Segmentation Paging 

Local Descriptor 

Table (LDT) 
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Segment protection 

• S flag in segment descriptor identifies code or data segment 

• Accessed (referenced) 

– has the segment been accessed since the last time the OS cleared the bit? 

• Dirty 

– Has the page been modified? 

• Data 

– Write-enable 

• Read-only or read/write? 

– Expansion direction 

• Expand down (e.g., for stack): dynamically changing the segment limit causes 

space to be added to the bottom of the stack 

• Code 

– Execute only, execute/read (e.g., constants in code segment) 

– Conforming: 

• Execution can continue even if privilege level is elevated 
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IA-32 Paging 

• 32-bit registers, 36-bit address space (64 GB) 

– Physical Address Extension (PAE) 

• Bit 5 of control register CR4 

• 52 bit physical address support (4 PB of memory) 

• Only a 4 GB address space may be accessed at one time 

 

– Page Size Extensions (PSE-36) 

• 36-bit page size extension (64 GB of memory) 

 

– Supports up to 4 MB page size 
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Intel 64-bit mode 

• Segments supported only in IA-32 emulation mode 

– Mostly disabled for 64-bit mode 

• 64-bit base addresses where used 

• Three paging modes 

– 32-bit paging  

• 32-bit virtual address; 32-40 bit physical address 

• 4 KB or 4 MB pages 

– PAE 

• 32-bit virtual addresses; up to 52-bit physical address 

• 4 KB or 2 MB pages 

– IA-32e paging 

• 48-bit virtual addresses; up to 52-bit physical address 

• 4 KB, 2 MB, or 1 GB pages 
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32-bit paging with 4 KB pages 

Virtual address Directory (10 bits) Page table (10 bits) 

31 22 21 12 11 0 

Offset (12 bits) 

CR3 register 

PDE 

Page directory 

PTE 

Physical address 

Page Table 

4 KB page 
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32-bit paging with 4 MB pages 

Virtual address Directory (10 bits) 

31 22 21 0 

Offset (22 bits) 

CR3 register 

PDE 

Page directory 

Physical address 

18 bits 

4 MB page 
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32-bit paging with 4 KB pages & PAE paging 

Virtual address Directory (9 bits) Page table (9 bits) 

31 21 20 12 11 0 

Offset (12 bits) 

PDE 

Page directory 

PTE 

Physical address 

Page Table 

4 KB page 

40 bits 

30 29 

PDPTE value 

Page directory 

pointer table 

CR3 register 
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IA-32e paging with 4 KB pages 

Virtual 

address Directory (9 bits) Page table (9 bits) 

38 21 20 12 11 0 

Offset (12 bits) 

PDE 

Page directory 

PTE 

Physical address 

Page Table 

4 KB page 

40 bits 

30 29 

PDPTE 

Page 

directory 

pointer table 

39 47 

Directory ptr (9 bits) PML4 (9 bits) 

9 bits 

9 bits 

PML4E 

CR3 register 

9 bits 9 bits 

12 bits 
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IA-32e paging with 2 MB pages 

Virtual 

address Directory (9 bits) 

38 21 20 0 

Offset (21 bits) 

PDE 

Page directory 

Physical address 

2 MB page 

31 bits 

30 29 

PDPTE 

Page 

directory 

pointer table 

39 47 

Directory ptr (9 bits) PML4 (9 bits) 

9 bits 

9 bits 

PML4E 

CR3 register 

21 bits 

9 bits 
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IA-32e paging with 1 GB pages 

Virtual 

address 

38 0 

Offset (30 bits) 

Physical address 

2 MB page 

30 29 

PDPTE 

Page 

directory 

pointer table 

22 bits 

39 47 

Directory ptr (9 bits) PML4 (9 bits) 

9 bits 

9 bits 

PML4E 

CR3 register 

30 bits 
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Example: TLBs on the Core i7 

• 4 KB pages 

– Instruction TLB: 128 entries per core 

– Data TLB: 64 entries 

• Core 2 Duo: 16 entries TLB0; 256 entries TLB1 

• Atom: 64-entry TLB, 16-entry PDE 

• Second-level unified TLB 

– 512 entries 
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Managing Page Tables 

• Linux: architecture independent (mostly) 

– Avoids segmentation (only Intel supports it) 

• Abstract structures to model 4-level page tables 

– Actual page tables are stored in a machine-specific manner 
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Recap 

• Fragmentation is a non-issue 

• Page table 

• Page table entry (PTE) 

• Multi-level page tables 

• Segmentation 

• Segmentation + Paging 

• Memory protection 

– Isolation of address spaces 

– Access control defined in PTE 
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Demand Paging 
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Executing a program 

• Allocate memory + stack 

• Load the entire program from memory 

(including any dynamically linked libraries) 

• Then execute the loaded program 

43 3/9/2015 © 2014-2015 Paul Krzyzanowski  



Executing a program 

• Allocate memory + stack 

• Load the entire program from memory 

(including any dynamically linked libraries) 

• Then execute the loaded program 
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This can take a while! 

 

There’s a better way… 



Demand Paging 

• Load pages into memory only as needed 

– On first access 

– Pages that are never used never get loaded 

 

• Use valid bit in page table entry 

– Valid: the page is in memory (“valid” mapping) 

– Invalid: out of bounds access or page is not in memory 

• Have to check the process’ memory map in the PCB to find out 

 

• Invalid memory access generates a page fault 
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Demand Paging: At Process Start 

• Open executable file 

• Set up memory map (stack & text/data/bss) 

– But don’t load anything! 

• Load first page & allocate initial stack page 

• Run it! 
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Memory Mapping 

• Executable files & libraries must be brought into a process’ virtual 

address space 

– File is mapped into the process’ memory 

– As pages are referenced, page frames are allocated & pages are loaded 

into them 

 

• vm_area_struct  

– Defines regions of virtual memory 

– Used in setting page table entries 

– Start of VM region, end of region, access rights 

• Several of these are created for each mapped image 

– Executable code, initialized data, uninitialized data 
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Demand Paging: Page Fault Handling 

• Eventually the process will access an address without a 

valid page 

– OS gets a page fault from the MMU 

 

• What happens? 

– Kernel searches a tree structure of memory allocations for the 

process to see if the faulting address is valid 

• If not valid, send a SEGV signal to the process 

– Is the type of access valid for the page? 

• Send a signal if not 

– We have a valid page but it’s not in memory 

• Go get it from the file! 
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Keeping track of a processes’ memory region 

49 

vm_start 

vm_end 

Linux stores information about a process’ 

address space in the memory descriptor of 

the PCB. 

Memory 

descriptor 

Memory 

region 

vm_area_struct 

Memory 

region 

Memory 

region 

Memory 

region 

Process virtual address space 

vm_end 

vm_end 

vm_end 

vm_start 

vm_start 

vm_start 
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Page Replacement 

• A process can run without having all of its memory allocated 

– It’s allocated on demand 

• If the 

    {address space used by all processes + OS} ≤ physical memory 

then we’re ok 

• Otherwise: 

– Make room: discard or store a page onto the disk 

– If the page came from a file & was not modified 

• Discard … we can always get it 

– If the page is dirty, it must be saved in a page file (aka  swap file) 

– Page file: a file (or disk partition) that holds excess pages 

• Windows: pagefile.sys 

• Linux: swap partition or swap file 

• OS X: multiple swap files in /private/var/vm/swapfile* 
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Demand Paging: Getting a Page 

• The page we need is either in the a mapped file 

(executable or library) or in a page file 

– If PTE is not valid but page # is present 

• The page we want has been saved to a swap file 

• Page # in the PTE tells us the location in the file 

– If the PTE is not valid and no page # 

• Load the page from the program file from the disk 

• Read page into physical memory 

1. Find a free page frame (evict one if necessary) 

2. Read the page: This takes time: context switch & block 

3. Update page table for the process 

4. Restart the process at the instruction that faulted 
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Cost 

• Handle page fault exception: ~ 400 usec 

• Disk seek & read: ~ 10 msec 

• Memory access: ~ 100 ns 

• Page fault degrades performance by around 100,000!! 

• Avoid page faults! 

– If we want < 10% degradation of performance, we must have just 

one page fault per 1,000,000 memory accesses 
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Page replacement 

We need a good replacement policy for good performance 
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FIFO Replacement 

First In, First Out 

• Good 

– May get rid of initialization code or other code that’s no longer used 

• Bad 

– May get rid of a page holding frequently used global variables 
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Least Recently Used (LRU) 

• Timestamp a page when it is accessed 

• When we need to remove a page, search for the one with 

the oldest timestamp 

 

• Nice algorithm but… 

– Timestamping is a pain – we can’t do it with the MMU! 
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Not Frequently Used Replacement 

Approximate LRU behavior 

• Each PTE has a reference bit 

• Keep a counter for each page frame 

• At each clock interrupt: 

– Add the reference bit of each frame to its counter 

– Clear reference bit 

• To evict a page, choose the frame with the lowest counter 

• Problem 

– No sense of time: a page that was used a lot a long time ago may still 

have a high count 

– Updating counters is expensive 
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Clock (Second Chance) 

• Arrange physical pages in a logical circle (circular queue) 

– Clock hand points to first frame 

• Paging hardware keeps one reference bit per frame 

– Set reference bit on memory reference 

– If it’s not set then the frame hasn’t been used for a while 

• On page fault: 

– Advance clock hand 

– Check reference bit 

• If 1, it’s been used recently – clear & advance 

• If 0, evict this page 
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Enhanced Clock 

• Use the reference and modify bits of the page 

• Choices for replacement – (reference, modify): 

– (0, 0): not referenced recently or modified 

• Good candidate for replacement 

– (0, 1): not referenced recently but modified. 

• The page will have to be saved before replacement 

– (1, 0): recently used. 

• Less ideal – will probably be used again 

– (1, 1): recently used and modified 

• Least ideal – will probably be used again AND we’ll have to save it to a 

swap file if we replace it. 

• Algorithm: like clock but replace the first page in the 

lowest non-empty class 
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Kernel Swap Daemon 

• kswapd on Linux 

• Anticipate out-of-memory problems 

• Decides whether to shrink caches if page count is low 

– Page cache, buffer cache 

– Evict pages from page frames 
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Demand paging summary 

• Allocate page table 

– Map kernel memory 

– Initialize stack 

– Memory-map text & date from executable program (& libraries) 

• But don’t load! 

• Load pages on demand (first access) 

– When we get a page fault 
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Summary: If we run out of free page frames 

• Free some page frames 

– Discard pages that are mapped to a file 

or 

– Move some pages to a page file 

 

• Clock algorithm 

 

• Anticipate need for free page frames 

– kswapd – kernel swap dæmon 
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Paging: Multitasking Considerations 
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Supporting multitasking 

• Multiple address spaces can be loaded in memory 

– Each process sees its own address space 

– Illusion is created by the page table 

• A CPU page table register points to the current page table 

• OS changes the register set when context switching 

– Includes page table register 

• Performance increased with Address Space ID in TLB 

– Can cache page number → page frame number caching 

– Avoid the need for page table lookups 
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Working Set 

• Keep active pages in memory 

• A process needs its working set in memory to perform well 

– Working set = 

Set of pages that have been referenced in the last window of time 

– Spatial locality 

– Size of working set varies during execution 

• More processes in a system: 

– Good 

Increase throughput; chance that some process is available to run 

– Bad 

Thrashing: processes do not have enough page frames available to 

run without paging 
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Thrashing 

• Locality 

– Process migrates from one working set to another 

• Thrashing 

– Occurs when sum of all working sets > total memory 

– There is not enough room to hold each process’ working set 

 

Degree of multiprogramming 

C
P

U
 u

ti
liz

a
ti
o
n
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Resident Set Management 

• Resident set = set of a process’ pages in memory 

• How many pages of a process do we bring in? 

• Resident set can be fixed or variable 

• Replacement scope: global or local 

– Global: process can pick a replacement from all frames 

• Variable allocation with global scope 

– Simple 

– Replacement policy may not take working sets into consideration 

• Variable allocation with local scope 

– More complex 

– Modify resident size to approximate working set size 
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Working Set Model 

Approximates locality of a program 

• ∆: working set window:  

– Amount of elapsed time while the process was actually executing 

(e.g., count of memory references) 

 

• WSSi : working set size of process Pi 

– WSSi = set of pages in most recent ∆ page references 

 

• System-wide demand for frames 

 D = ∑ WSSi 

 

• If D > total memory size, then we get thrashing 
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Page fault frequency 

• Too small a working set causes a process to thrash 

• Monitor page fault frequency per process 

– If too high, the process needs more frames 

– If too low, the process may have too many frames 
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Dealing with thrashing 

If all else fails … 

– Suspend a process(es) 

• Lowest priority, Last activated, smallest resident set, …? 

– Swapping 

• Move an entire process onto the disk: no pages in memory 

• Process must be re-loaded to run 

• Not used on modern systems (Linux, Windows, etc.) 

• Term is now often used interchangeably with paging 
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Real-Time Considerations 

• Avoid paging time-critical processes 

– The pages they use will sit in memory 

 

• Watch out for demand paging 

– Might cause latency at a bad time 

 

• Avoid page table lookup overhead 

– Ensure that process memory is mapped in the TLB 

• Pin high-priority real-time process memory into TLB 

(if possible) 

– Or run CPU without virtual addressing 
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Memory-mapped files 

• Use the virtual memory mechanism to treat file I/O as 

memory accesses 

– Use memory operations instead of read & write system calls 

• Associate part of the virtual address space with a file 

– Initial access to the file 

• Results in page fault & read from disk 

– Subsequent accesses 

• Memory operations 

mmap system call 

• Multiple processes may map the same file to share data 
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Allocating memory to processes 

• When a process needs more memory 

– Pages allocated from kernel 

• Use page replacement algorithms (e.g., clock, enhanced clock, …) 

• When do processes need more memory? 

– Demand paging (loading in text & static data from executable file) 

– Memory mapped files via mmap (same as demand paging) 

– Stack growth (get a page fault) 

– Process needs more heap space 

• malloc is a user-level library: reuses space on the heap 

• brk system call: change the data segment “break point” 

malloc requests big chunks to avoid system call overhead 

• More recently, use mmap to map “anonymous” memory – memory not 

associated with a  file 

 

73 3/9/2015 © 2014-2015 Paul Krzyzanowski  



The End 
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