
Operating Systems

10. Memory Management – Part 2

Paging

Paul Krzyzanowski

Rutgers University

Spring 2015

1 3/9/2015 © 2014-2015 Paul Krzyzanowski

Page translation

Page number, p Displacement (offset), d

CPU

Logical

address

Physical

address

p d f d

Page Frame

f

f

f

f

f

f

f

Physical memory Page table

f = page_table[p]

Page Table

Entry (PTE)

Page

2 3/9/2015 © 2014-2015 Paul Krzyzanowski

Page table

• One page table per process

– Contains page table entries (PTEs)

• Each PTE contains

– Corresponding page frame # for a page #

– Permissions

• Permissions (read-only, read-write, execute-only, privileged access only…)

– Access flags

• Valid? Is the page mapped?

• Modified?

• Referenced?

• Page table is selected by setting a page table base register

with the address of the table

3 3/9/2015 © 2014-2015 Paul Krzyzanowski

Accessing memory

• CPU starts in physical addressing mode

– Someone has to set up page tables

– Divide address space into user & kernel spaces

– Switch to Virtual addressing mode

• Each process makes virtual address references for all memory

access

• MMU converts to physical address via a per-process page table

– Page number Page frame number

– Page fault trap if not a valid reference

4 3/9/2015 © 2014-2015 Paul Krzyzanowski

Improving look-up performance: TLB

• Cache frequently-accessed pages

– Translation lookaside buffer (TLB)

– Associative memory: key (page #) and value (frame #)

• TLB is on-chip & fast … but small (64 – 1,024 entries)

• TLB miss: result not in the TLB

– Need to do page table lookup in memory

• Hit ratio = % of lookups that come from the TLB

• Address Space Identifier (ASID): share TLB among

address spaces

5 3/9/2015 © 2014-2015 Paul Krzyzanowski

Page-Based Virtual Memory Benefits

• Allow discontiguous allocation

– Simplify memory management for multiprogramming

– MMU gives the illusion of contiguous allocation of memory

• Process can get memory anywhere in the address space

– Allow a process to feel that it has more memory than it really has

– Process can have greater address space than system memory

• Enforce memory Protection

– Each process’ address space is separate from others

– MMU allows pages to be protected:

• Writing, execution, kernel vs. user access

6 3/9/2015 © 2014-2015 Paul Krzyzanowski

Kernel’s view of memory

• A process sees a flat linear address space

– Accessing regions of memory mapped to the kernel causes a page fault

• Kernel’s view:

– Address space is split into two parts

• User part: changes with context switches

• Kernel part: remains constant across context switches

– Split is configurable:

• 32-bit x86: PAGE_OFFSET: 3 GB for process + 1 GB kernel

Process memory

(context-specific)

(3 GB)

Kernel memory

(1 GB)

0xffffffff

0x00000000

Process memory

(context-specific)

(2 GB)

Kernel memory

(2 GB)

(8 TB on 64-bit)

0xffffffff

0x00000000

0x80000000

0xc0000000

7 3/9/2015 © 2014-2015 Paul Krzyzanowski

Sample memory map per process

• Interrupt stack

• Data

• Text (code)

argv, envp

user stack

heap

data

text

kernel

User process

A lot of unused space!

8 3/9/2015 © 2014-2015 Paul Krzyzanowski

Multilevel (Hierarchical) page tables

• Most processes use only a small part of their address

space

• Keeping an entire page table is wasteful

– 32-bit system with 4KB pages: 20-bit page table

 ⇒ 220 = 1,048,576 entries in a page table

9 3/9/2015 © 2014-2015 Paul Krzyzanowski

Multilevel page table

base, b0

+

index table

bn

partial page

table

p'

p0 p1 d

+

bn + p1

b0 + p0

p' d

real address

Virtual address

10 3/9/2015 © 2014-2015 Paul Krzyzanowski

Virtual memory makes memory sharing easy

Sharing is by page granularity

11

Shared library or

Shared memory

3/9/2015 © 2014-2015 Paul Krzyzanowski

Virtual memory makes memory sharing easy

Sharing is by page granularity.

Keep reference counts!

12 3/9/2015 © 2014-2015 Paul Krzyzanowski

Copy on write

• Share until a page gets modified

• Example: fork()

– Set all pages to read-only

– Trap on write

– If legitimate write

• Allocate a new page and copy contents from the original

13 3/9/2015 © 2014-2015 Paul Krzyzanowski

MMU Example: ARM

3/9/2015 © 2014-2015 Paul Krzyzanowski 14

ARMv7-A architecture

• Cortex-A8

– iPhone 3GS, iPod Touch 3G, Apple A4 processor in iPhone 4 &

iPad, Droid X, Droid 2, etc.)

• Cortex-A9

– Multicore support

– TI OMAP 44xx series, Apple A5 processor in iPad 2

• Apple A6

– 32-bit AMD Cortex-A15 processor

– Used in iPhone 5, 5C, 4th gen iPad

• Apple A7

– 64-bit ARMv8-A architecture

– Used in iPhone 5S, 2nd gen iPad mini, iPad Air

15 3/9/2015 © 2014-2015 Paul Krzyzanowski

Pages

Four page (block) sizes:

– Supersections: 16MB memory blocks

– Sections: 1MB memory blocks

– Large pages: 64KB memory blocks

– Small pages: 4KB memory blocks

16 3/9/2015 © 2014-2015 Paul Krzyzanowski

Two levels of tables

• First level table (aka translation tables)

– Base address, descriptors, and translation properties for sections

and supersections (1 MB & 16 MB blocks)

– Translation properties and pointers to a second level table for large

and small pages (4 KB and 64 KB pages)

• Second level tables (aka page tables)

– Each contains base address and translation properties for small

and large pages

• Benefit: a large region of memory can be mapped using a

single entry in the TLB (e.g., OS)

17 3/9/2015 © 2014-2015 Paul Krzyzanowski

ARM Page Tables

1st level table
(per process)

2nd level tables
(set per process)

base

18 3/9/2015 © 2014-2015 Paul Krzyzanowski

TLB

• 1st level: MicroTLB – one each for instruction & data sides

– 32 entries (10 entries in older v6 architectures)

– Address Space Identifier (ASID) [8 bits] and Non-Secure Table Identifier

(NSTID) [1 bit]; entries can be global

– Fully associative; one-cycle lookup

– Lookup checks protection attributes: may signal Data Abort

– Replacement either Round-Robin (default) or Random

• 2nd level: Main TLB – catches cache misses from microTLBs

– 8 fully associative entries (may be locked) + 64 low associative entries

– variable number of cycles for lookup

– lockdown region of 8 entries (important for real-time)

– Entries are globally mapped or associated ASID and NSTID

19 3/9/2015 © 2014-2015 Paul Krzyzanowski

ARM Page Tables

1st level table
(per process)

2nd level tables
(set per process)

base

One of two base registers (TTBR0/TTRBR1) is used

If N most significant bits of virtual address are 0

 then use TTBR0

 else use TTBR1

N is defined by the Translation Table Base Control Register (TTBCR)

Data

MicroTLB

Instruction

MicroTLB

Main TLB

(3) Translation table walk

(2) Main TLB lookup

(1) MicroTLB lookup

20 3/9/2015 © 2014-2015 Paul Krzyzanowski

3
2

 e
n

tr
ie

s

3
2

 e
n

tr
ie

s
 8
 +

 6
4

 e
n

tr
ie

s

Translation flow for a section (1 MB)

Virtual address Table index (12 bits)

31 20 19 0

Section offset (20 bits)

Physical section = read [Translation table base + table index]

Physical address = physical section : section offset

Real address Physical section (12 bits)

31 20 19 0

Section offset (20 bits)

21 3/9/2015 © 2014-2015 Paul Krzyzanowski

Translation flow for a supersection (16 MB)

Virtual address Table index (8 bits)

31 24 23 12 11 0

Supersection offset (24 bits)

Supersection base address, Extended base address =

 read [Translation table base + table index]

Real address = Extended base address : physical section : section offset

Real

address
Extended base

address (8 bits)

Supersection base

address (8 bits)

39 32 31 24 23 0

Supersection offset (24 bits)

40 bit address

(1 TB)

22 3/9/2015 © 2014-2015 Paul Krzyzanowski

Translation flow for a small page (4KB)

Virtual address First level index (12 bits)
Second-level index

(8 bits)

31 20 19 12 11 0

Page offset (12 bits)

Page table address = read [Translation table base + first-level index]

Physical page = read[page table address + second-level index]

Real address = physical page : page offset

Real address Physical page (20 bits)

31 12 11 0

Page offset (12 bits)

23 3/9/2015 © 2014-2015 Paul Krzyzanowski

Translation flow for a large page (64KB)

Virtual address First level index (12 bits)
Second-level

index (4 bits)

31 20 19 16 15 0

Page offset (16 bits)

Page table address = Read [Translation table base + first-level index]

Physical page = read[page table address + second-level index]

Physical address = physical page : page offset

Real address Physical page (16 bits)

31 16 15 0

Page offset (16 bits)

24 3/9/2015 © 2014-2015 Paul Krzyzanowski

Memory Protection & Control

• Domains

– Clients execute & access data within a domain. Each access is checked

against access permissions for each memory block

• Memory region attributes

– Execute never

– Read-only, read/write, no access

• Privileged read-only, privileged & user read-only

– Non-secure (is this secure memory or not?)

– Sharable (is this memory shared with other processors)

• Strongly ordered (memory accesses must occur in program order)

• Device/shared, device/non-shared

• Normal/shared, normal/non-shared

• Signal Memory Abort if permission is not valid for access

25 3/9/2015 © 2014-2015 Paul Krzyzanowski

MMU Example: x86-64

3/9/2015 © 2014-2015 Paul Krzyzanowski 26

IA-32 Memory Models

• Flat memory model

– Linear address space

– Single, contiguous address space

• Segmented memory model

– Memory appears as a group of independent address spaces: segments

(code, data, stack, etc.)

– Logical address = {segment selector, offset}

– 16,383 segments; each segment can be up to 232 bytes

• Real mode

– 8086 model

– Segments up to 64KB in size

– maximum address space: 220 bytes

27 3/9/2015 © 2014-2015 Paul Krzyzanowski

Segments

• Each segment may be up to 4 GB

• Up to 16 K segments per process

• Two partitions per process

– Local: private to the process

• Up to 8 K segments

• Info stored in a Local Descriptor Table (LDT)

– Global: shared among all processes

• Up to 8 K segments

• Info stored in a Global Descriptor Table (GDT)

• Logical address is (segment selector, offset)

– Segment selector = 16 bits:

• 13 bits segment number + 1 bit LDT/GDT ID + 2 bits protection

28 3/9/2015 © 2014-2015 Paul Krzyzanowski

Segment

Descriptor

IA-32 Segmentation & Paging

16 bits

Segment

selector Offset

32 bits

Global Descriptor

Table (GDT)

Segment

Descriptor

Linear Address

Space

Logical Address

(Far Pointer)

Segment

base

address

Linear Addr

+

segment

page

Linear Address

Dir Table Offset

Page Directory

Entry

Page Table

Entry
+

Physical

Address Space

Physical Addr

+

Segmentation Paging

Local Descriptor

Table (LDT)

29 3/9/2015 © 2014-2015 Paul Krzyzanowski

Segment protection

• S flag in segment descriptor identifies code or data segment

• Accessed (referenced)

– has the segment been accessed since the last time the OS cleared the bit?

• Dirty

– Has the page been modified?

• Data

– Write-enable

• Read-only or read/write?

– Expansion direction

• Expand down (e.g., for stack): dynamically changing the segment limit causes

space to be added to the bottom of the stack

• Code

– Execute only, execute/read (e.g., constants in code segment)

– Conforming:

• Execution can continue even if privilege level is elevated

30 3/9/2015 © 2014-2015 Paul Krzyzanowski

IA-32 Paging

• 32-bit registers, 36-bit address space (64 GB)

– Physical Address Extension (PAE)

• Bit 5 of control register CR4

• 52 bit physical address support (4 PB of memory)

• Only a 4 GB address space may be accessed at one time

– Page Size Extensions (PSE-36)

• 36-bit page size extension (64 GB of memory)

– Supports up to 4 MB page size

31 3/9/2015 © 2014-2015 Paul Krzyzanowski

Intel 64-bit mode

• Segments supported only in IA-32 emulation mode

– Mostly disabled for 64-bit mode

• 64-bit base addresses where used

• Three paging modes

– 32-bit paging

• 32-bit virtual address; 32-40 bit physical address

• 4 KB or 4 MB pages

– PAE

• 32-bit virtual addresses; up to 52-bit physical address

• 4 KB or 2 MB pages

– IA-32e paging

• 48-bit virtual addresses; up to 52-bit physical address

• 4 KB, 2 MB, or 1 GB pages

32 3/9/2015 © 2014-2015 Paul Krzyzanowski

32-bit paging with 4 KB pages

Virtual address Directory (10 bits) Page table (10 bits)

31 22 21 12 11 0

Offset (12 bits)

CR3 register

PDE

Page directory

PTE

Physical address

Page Table

4 KB page

33 3/9/2015 © 2014-2015 Paul Krzyzanowski

32-bit paging with 4 MB pages

Virtual address Directory (10 bits)

31 22 21 0

Offset (22 bits)

CR3 register

PDE

Page directory

Physical address

18 bits

4 MB page

34 3/9/2015 © 2014-2015 Paul Krzyzanowski

32-bit paging with 4 KB pages & PAE paging

Virtual address Directory (9 bits) Page table (9 bits)

31 21 20 12 11 0

Offset (12 bits)

PDE

Page directory

PTE

Physical address

Page Table

4 KB page

40 bits

30 29

PDPTE value

Page directory

pointer table

CR3 register

35 3/9/2015 © 2014-2015 Paul Krzyzanowski

IA-32e paging with 4 KB pages

Virtual

address Directory (9 bits) Page table (9 bits)

38 21 20 12 11 0

Offset (12 bits)

PDE

Page directory

PTE

Physical address

Page Table

4 KB page

40 bits

30 29

PDPTE

Page

directory

pointer table

39 47

Directory ptr (9 bits) PML4 (9 bits)

9 bits

9 bits

PML4E

CR3 register

9 bits 9 bits

12 bits

36 3/9/2015 © 2014-2015 Paul Krzyzanowski

IA-32e paging with 2 MB pages

Virtual

address Directory (9 bits)

38 21 20 0

Offset (21 bits)

PDE

Page directory

Physical address

2 MB page

31 bits

30 29

PDPTE

Page

directory

pointer table

39 47

Directory ptr (9 bits) PML4 (9 bits)

9 bits

9 bits

PML4E

CR3 register

21 bits

9 bits

37 3/9/2015 © 2014-2015 Paul Krzyzanowski

IA-32e paging with 1 GB pages

Virtual

address

38 0

Offset (30 bits)

Physical address

2 MB page

30 29

PDPTE

Page

directory

pointer table

22 bits

39 47

Directory ptr (9 bits) PML4 (9 bits)

9 bits

9 bits

PML4E

CR3 register

30 bits

38 3/9/2015 © 2014-2015 Paul Krzyzanowski

Example: TLBs on the Core i7

• 4 KB pages

– Instruction TLB: 128 entries per core

– Data TLB: 64 entries

• Core 2 Duo: 16 entries TLB0; 256 entries TLB1

• Atom: 64-entry TLB, 16-entry PDE

• Second-level unified TLB

– 512 entries

39 3/9/2015 © 2014-2015 Paul Krzyzanowski

Managing Page Tables

• Linux: architecture independent (mostly)

– Avoids segmentation (only Intel supports it)

• Abstract structures to model 4-level page tables

– Actual page tables are stored in a machine-specific manner

40 3/9/2015 © 2014-2015 Paul Krzyzanowski

Recap

• Fragmentation is a non-issue

• Page table

• Page table entry (PTE)

• Multi-level page tables

• Segmentation

• Segmentation + Paging

• Memory protection

– Isolation of address spaces

– Access control defined in PTE

41 3/9/2015 © 2014-2015 Paul Krzyzanowski

Demand Paging

3/9/2015 © 2014-2015 Paul Krzyzanowski 42

Executing a program

• Allocate memory + stack

• Load the entire program from memory

(including any dynamically linked libraries)

• Then execute the loaded program

43 3/9/2015 © 2014-2015 Paul Krzyzanowski

Executing a program

• Allocate memory + stack

• Load the entire program from memory

(including any dynamically linked libraries)

• Then execute the loaded program

44 3/9/2015 © 2014-2015 Paul Krzyzanowski

This can take a while!

There’s a better way…

Demand Paging

• Load pages into memory only as needed

– On first access

– Pages that are never used never get loaded

• Use valid bit in page table entry

– Valid: the page is in memory (“valid” mapping)

– Invalid: out of bounds access or page is not in memory

• Have to check the process’ memory map in the PCB to find out

• Invalid memory access generates a page fault

45 3/9/2015 © 2014-2015 Paul Krzyzanowski

Demand Paging: At Process Start

• Open executable file

• Set up memory map (stack & text/data/bss)

– But don’t load anything!

• Load first page & allocate initial stack page

• Run it!

46 3/9/2015 © 2014-2015 Paul Krzyzanowski

Memory Mapping

• Executable files & libraries must be brought into a process’ virtual

address space

– File is mapped into the process’ memory

– As pages are referenced, page frames are allocated & pages are loaded

into them

• vm_area_struct

– Defines regions of virtual memory

– Used in setting page table entries

– Start of VM region, end of region, access rights

• Several of these are created for each mapped image

– Executable code, initialized data, uninitialized data

47 3/9/2015 © 2014-2015 Paul Krzyzanowski

Demand Paging: Page Fault Handling

• Eventually the process will access an address without a

valid page

– OS gets a page fault from the MMU

• What happens?

– Kernel searches a tree structure of memory allocations for the

process to see if the faulting address is valid

• If not valid, send a SEGV signal to the process

– Is the type of access valid for the page?

• Send a signal if not

– We have a valid page but it’s not in memory

• Go get it from the file!

48 3/9/2015 © 2014-2015 Paul Krzyzanowski

Keeping track of a processes’ memory region

49

vm_start

vm_end

Linux stores information about a process’

address space in the memory descriptor of

the PCB.

Memory

descriptor

Memory

region

vm_area_struct

Memory

region

Memory

region

Memory

region

Process virtual address space

vm_end

vm_end

vm_end

vm_start

vm_start

vm_start

3/9/2015 © 2014-2015 Paul Krzyzanowski

Page Replacement

• A process can run without having all of its memory allocated

– It’s allocated on demand

• If the

 {address space used by all processes + OS} ≤ physical memory

then we’re ok

• Otherwise:

– Make room: discard or store a page onto the disk

– If the page came from a file & was not modified

• Discard … we can always get it

– If the page is dirty, it must be saved in a page file (aka swap file)

– Page file: a file (or disk partition) that holds excess pages

• Windows: pagefile.sys

• Linux: swap partition or swap file

• OS X: multiple swap files in /private/var/vm/swapfile*

50 3/9/2015 © 2014-2015 Paul Krzyzanowski

Demand Paging: Getting a Page

• The page we need is either in the a mapped file

(executable or library) or in a page file

– If PTE is not valid but page # is present

• The page we want has been saved to a swap file

• Page # in the PTE tells us the location in the file

– If the PTE is not valid and no page #

• Load the page from the program file from the disk

• Read page into physical memory

1. Find a free page frame (evict one if necessary)

2. Read the page: This takes time: context switch & block

3. Update page table for the process

4. Restart the process at the instruction that faulted

51 3/9/2015 © 2014-2015 Paul Krzyzanowski

Cost

• Handle page fault exception: ~ 400 usec

• Disk seek & read: ~ 10 msec

• Memory access: ~ 100 ns

• Page fault degrades performance by around 100,000!!

• Avoid page faults!

– If we want < 10% degradation of performance, we must have just

one page fault per 1,000,000 memory accesses

52 3/9/2015 © 2014-2015 Paul Krzyzanowski

Page replacement

We need a good replacement policy for good performance

53 3/9/2015 © 2014-2015 Paul Krzyzanowski

FIFO Replacement

First In, First Out

• Good

– May get rid of initialization code or other code that’s no longer used

• Bad

– May get rid of a page holding frequently used global variables

54 3/9/2015 © 2014-2015 Paul Krzyzanowski

Least Recently Used (LRU)

• Timestamp a page when it is accessed

• When we need to remove a page, search for the one with

the oldest timestamp

• Nice algorithm but…

– Timestamping is a pain – we can’t do it with the MMU!

55 3/9/2015 © 2014-2015 Paul Krzyzanowski

Not Frequently Used Replacement

Approximate LRU behavior

• Each PTE has a reference bit

• Keep a counter for each page frame

• At each clock interrupt:

– Add the reference bit of each frame to its counter

– Clear reference bit

• To evict a page, choose the frame with the lowest counter

• Problem

– No sense of time: a page that was used a lot a long time ago may still

have a high count

– Updating counters is expensive

56 3/9/2015 © 2014-2015 Paul Krzyzanowski

Clock (Second Chance)

• Arrange physical pages in a logical circle (circular queue)

– Clock hand points to first frame

• Paging hardware keeps one reference bit per frame

– Set reference bit on memory reference

– If it’s not set then the frame hasn’t been used for a while

• On page fault:

– Advance clock hand

– Check reference bit

• If 1, it’s been used recently – clear & advance

• If 0, evict this page

57 3/9/2015 © 2014-2015 Paul Krzyzanowski

Enhanced Clock

• Use the reference and modify bits of the page

• Choices for replacement – (reference, modify):

– (0, 0): not referenced recently or modified

• Good candidate for replacement

– (0, 1): not referenced recently but modified.

• The page will have to be saved before replacement

– (1, 0): recently used.

• Less ideal – will probably be used again

– (1, 1): recently used and modified

• Least ideal – will probably be used again AND we’ll have to save it to a

swap file if we replace it.

• Algorithm: like clock but replace the first page in the

lowest non-empty class

58 3/9/2015 © 2014-2015 Paul Krzyzanowski

Kernel Swap Daemon

• kswapd on Linux

• Anticipate out-of-memory problems

• Decides whether to shrink caches if page count is low

– Page cache, buffer cache

– Evict pages from page frames

60 3/9/2015 © 2014-2015 Paul Krzyzanowski

Demand paging summary

• Allocate page table

– Map kernel memory

– Initialize stack

– Memory-map text & date from executable program (& libraries)

• But don’t load!

• Load pages on demand (first access)

– When we get a page fault

61 3/9/2015 © 2014-2015 Paul Krzyzanowski

Summary: If we run out of free page frames

• Free some page frames

– Discard pages that are mapped to a file

or

– Move some pages to a page file

• Clock algorithm

• Anticipate need for free page frames

– kswapd – kernel swap dæmon

62 3/9/2015 © 2014-2015 Paul Krzyzanowski

Paging: Multitasking Considerations

3/9/2015 © 2014-2015 Paul Krzyzanowski 63

Supporting multitasking

• Multiple address spaces can be loaded in memory

– Each process sees its own address space

– Illusion is created by the page table

• A CPU page table register points to the current page table

• OS changes the register set when context switching

– Includes page table register

• Performance increased with Address Space ID in TLB

– Can cache page number → page frame number caching

– Avoid the need for page table lookups

64 3/9/2015 © 2014-2015 Paul Krzyzanowski

Working Set

• Keep active pages in memory

• A process needs its working set in memory to perform well

– Working set =

Set of pages that have been referenced in the last window of time

– Spatial locality

– Size of working set varies during execution

• More processes in a system:

– Good

Increase throughput; chance that some process is available to run

– Bad

Thrashing: processes do not have enough page frames available to

run without paging

65 3/9/2015 © 2014-2015 Paul Krzyzanowski

Thrashing

• Locality

– Process migrates from one working set to another

• Thrashing

– Occurs when sum of all working sets > total memory

– There is not enough room to hold each process’ working set

Degree of multiprogramming

C
P

U
 u

ti
liz

a
ti
o
n

66 3/9/2015 © 2014-2015 Paul Krzyzanowski

Resident Set Management

• Resident set = set of a process’ pages in memory

• How many pages of a process do we bring in?

• Resident set can be fixed or variable

• Replacement scope: global or local

– Global: process can pick a replacement from all frames

• Variable allocation with global scope

– Simple

– Replacement policy may not take working sets into consideration

• Variable allocation with local scope

– More complex

– Modify resident size to approximate working set size

67 3/9/2015 © 2014-2015 Paul Krzyzanowski

Working Set Model

Approximates locality of a program

• ∆: working set window:

– Amount of elapsed time while the process was actually executing

(e.g., count of memory references)

• WSSi : working set size of process Pi

– WSSi = set of pages in most recent ∆ page references

• System-wide demand for frames

 D = ∑ WSSi

• If D > total memory size, then we get thrashing

68 3/9/2015 © 2014-2015 Paul Krzyzanowski

Page fault frequency

• Too small a working set causes a process to thrash

• Monitor page fault frequency per process

– If too high, the process needs more frames

– If too low, the process may have too many frames

69 3/9/2015 © 2014-2015 Paul Krzyzanowski

Dealing with thrashing

If all else fails …

– Suspend a process(es)

• Lowest priority, Last activated, smallest resident set, …?

– Swapping

• Move an entire process onto the disk: no pages in memory

• Process must be re-loaded to run

• Not used on modern systems (Linux, Windows, etc.)

• Term is now often used interchangeably with paging

70 3/9/2015 © 2014-2015 Paul Krzyzanowski

Real-Time Considerations

• Avoid paging time-critical processes

– The pages they use will sit in memory

• Watch out for demand paging

– Might cause latency at a bad time

• Avoid page table lookup overhead

– Ensure that process memory is mapped in the TLB

• Pin high-priority real-time process memory into TLB

(if possible)

– Or run CPU without virtual addressing

71 3/9/2015 © 2014-2015 Paul Krzyzanowski

Memory-mapped files

• Use the virtual memory mechanism to treat file I/O as

memory accesses

– Use memory operations instead of read & write system calls

• Associate part of the virtual address space with a file

– Initial access to the file

• Results in page fault & read from disk

– Subsequent accesses

• Memory operations

mmap system call

• Multiple processes may map the same file to share data

72 3/9/2015 © 2014-2015 Paul Krzyzanowski

Allocating memory to processes

• When a process needs more memory

– Pages allocated from kernel

• Use page replacement algorithms (e.g., clock, enhanced clock, …)

• When do processes need more memory?

– Demand paging (loading in text & static data from executable file)

– Memory mapped files via mmap (same as demand paging)

– Stack growth (get a page fault)

– Process needs more heap space

• malloc is a user-level library: reuses space on the heap

• brk system call: change the data segment “break point”

malloc requests big chunks to avoid system call overhead

• More recently, use mmap to map “anonymous” memory – memory not

associated with a file

73 3/9/2015 © 2014-2015 Paul Krzyzanowski

The End

3/9/2015 74 © 2014-2015 Paul Krzyzanowski

