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CPU Access to Memory 

The CPU reads instructions and reads/write data from/to memory 

 

CPU memory read/write 

Functional interface: 

value = read(address) 

write(address, value) 



Programs have references to memory 

• Programs make use of memory addresses 

– Instruction execution: addresses for branching 

– Data access: addresses for reading/writing data 
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Monoprogramming 

• Run one program at a time 

• Share memory between the program and the OS 

 

OS 

Program 
This was the model in old MS-

DOS (and other) systems 

Absolute memory 

addresses are no problem 



Multiprogramming 

• Keep more than one process in memory 

• More processes in memory improves CPU utilization 

 

OS 

Program 0 

Program 1 

Program 2 

Absolute memory 

addresses are a problem!! 



Justifying Multiprogramming: CPU Utilization 

• Keep more than one process in memory 

• More processes in memory improves CPU utilization 

 

OS 

Program 0 

• If a process spends 20% of its time 

computing, then would switching among 

5 processes give us 100% CPU 

utilization? 

• Not quite. For n processes, if  

p = % time a process is blocked on I/O 

then: 

 probability all are blocked = pn 

• CPU is not idle for (1-pn) of the time 

• 5 processes: 67% utilization 

 

 

Program 1 

Program 2 



How do programs specify memory access? 

• Absolute code 

If you know where the program gets loaded (any relocation is 

done at link time) 

• Position independent code 

All addresses are relative (e.g., gcc –fPIC option) 

• Dynamically relocatable code 

Relocated at load time 

• Or … use logical addresses 

Absolute code with with addresses translated at run time 

Need special memory translation hardware 



Dynamic Linking 
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Dynamic Linking 

• A process loads libraries at load time 

– Symbol references are resolved at load time 

 

• OS loader finds the dynamic libraries and brings them 

into the process’ memory address space 



Dynamic Loading 

• A process can load a module at runtime on request 

– Similar to dynamic linking 

– Program is written to load a specific library 

– Resolve symbols to get pointers to data & functions 

 

• The library can be unloaded when not needed 



Shared libraries 

• Dynamic linking + sharing 

• Libraries that are loaded by programs when they start 

– All programs that start later use the shared library 

– Program loader searches for needed shared libraries 

• Object code is linked with a stub 

– Stub checks whether the needed library is in memory 

– If not, the stub loads it 

– Stub is then replaced with the address of the library 

• Operating system: 

– Checks if the shared library is already in another process’ memory 

– Shares memory region among processes 

• Need position independent code or pre-mapped code  

(reserved regions of memory that processes share) 



Logical addressing 

Memory management unit (MMU): 

Real-time, on-demand translation between 

logical (virtual) and physical addresses 

CPU memory read/write MMU read/write 

Logical addresses Physical addresses 



Relocatable addressing 

Base & limit 

– Physical address = logical address + base register 

– But first check that: logical address < limit 
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Allocating memory 



Multiple Fixed Partitions 

• Divide memory into predefined partitions (segments) 

– Partitions don’t have to be the same size 

– For example: a few big partitions and many small ones 

• New process gets queued for a partition that can hold it 

• Unused memory in a partition is wasted 

– Internal fragmentation 

– Unused partitions: external fragmentation 

• Contiguous allocation: 

Process takes up a contiguous region of memory 

 



Variable partition multiprogramming 

• Create partitions as needed 

• New process gets queued 

• OS tries to find a hole for it 
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Variable partition multiprogramming 

• Create partitions as needed 

• New process gets queued 

• OS tries to find a hole for it 

OS 

Program 0 

Program 1 

Program 2 

Program 3 

Program 4 

program 3 exits 

program 1 exits 
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hole 

hole 

fragments 



Allocation algorithms 

• First fit: find the first hole that fits 

• Best fit: find the hole that best fits the process 

• Worst fit: find the largest available hole 

– Why? Maybe the remaining space will be big enough for another 

process. In practice, this algorithm does not work well. 



Variable partition multiprogramming 

• What if a process needs more memory? 

– Always allocate some extra memory just in case 

– Find a hole big enough to relocate the process 

• Combining holes (fragments) 

– Memory compaction 

– Usually not done because of CPU time to move a lot of memory 



Segmentation hardware 

• Divide a process into segments and place each segment 

into a partition of memory 

– Code segment, data segment, stack segment, etc. 

• Discontiguous memory allocation 
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Paging 

• Memory management scheme 

– Physical space can be non-contiguous 

– No fragmentation problems 

– No need for compaction 

• Paging is implemented by the Memory Management Unit 

(MMU) in the processor 



Paging 

• Translation: 

– Divide physical memory into fixed-size blocks: page frames 

– A logical address is divided into blocks of the same size: pages 

– All memory accesses are translated: page → page frame 

– A page table maps pages to frames 

• Example: 

– 32-bit address, 4 KB page size: 

• Top 20 bits identify the page number 

• Bottom 12 bits identify offset within the page/frame 

 

Page number, p Displacement (offset), d 



Page translation 

Page number, p Displacement (offset), d 

CPU 

Logical 

address 

Physical 

address 

p d f d 

f = page_table[p] 

f 

f 

f 

f 

f 

f 

f 

Physical memory 
Page table 

f = page_table[p] 



Logical vs. physical views of memory 
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Hardware Implementation 

• Where do you keep the page table?  

In memory 

• Each process gets its own virtual address space 

– Each process has its own page table 

– Change the page table by changing a page table base register 

• CR3 register on Intel IA-32 and x86-64 architectures 

• Memory translation is now slow! 

– To read a byte of memory, we need to read the page table first 

– Each memory access is now 2x slower! 



Hardware Implementation: TLB 

• Cache frequently-accessed pages 

– Translation lookaside buffer (TLB) 

– Associative memory: key (page #) and value (frame #) 

 

• TLB is on-chip & fast … but small (64-1,024 entries) 

– Locality in the program ensures lots of repeated lookups 

 

• TLB miss = page # not cached in the TLB 

– Need to do page table lookup in memory 

 

• Hit ratio = % of lookups that come from the TLB 



Address Space Identifiers: Tagged TLB 

• There is only one TLB per system 

 

• When we context switch, we switch address spaces 

– New page table 

– BUT … TLB entries belong to the old address space 

 

• Either: 

– Flush (invalidate) the entire TLB 

– Have a Tagged TLB with an Address Space Identifier (ASID) 



Protection 

• An MMU can enforce memory protection 

 

• Page table stores status & protection bits per frame 

– Valid/invalid: is there a frame mapped to this page? 

– Read-only 

– No execute 

– Kernel only access 

– Dirty: the page has been modified since the flag was cleared 

– Accessed: the page has been accessed since the flag was cleared 

 



Multilevel (Hierarchical) page tables 

• Most processes use only a small part of their address 

space 

 

• Keeping an entire page table is wasteful 

– Example 

 32-bit system with 4KB pages: 20-bit page table 

 ⇒ 220 = 1,048,576 entries in the page table 
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Inverted page tables 

• # of pages on a system may be huge 

• # of page frames will be more manageable  

(limited by physical memory) 

• Inverted page table 

– ith entry: contains info on what is in page frame i 

• Table access is no longer a simple index but a search 

– Use hashing and take advantage of associative memory 



Next Lecture 

• Sharing memory across address spaces 

• Copy on write 

• Demand paging 

– Load needed pages on demand 

– Page faults 

– Page replacement: FIFO, LRU, second chance 

– Thrashing 

– Working set: time window 

 

March 9, 2015 © 2014-2015 Paul Krzyzanowski 32 



The End 
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