
CS 416: Operating Systems Design February 17, 2014

© 2014 Paul Krzyzanowski 1

Operating Systems
08. Real-Time Scheduling

Paul Krzyzanowski

Rutgers University

Spring 2014

1 February 17, 2014 © 2014 Paul Krzyzanowski

What’s wrong with priorities?

• Fixed priorities:

– Should I be #4? … #6? … #15?

• Dynamic priorities

– I have no idea what my priority is because the CPU changes it!

2

Real-time demands

• We don’t always need a LOT of CPU time but we may

need it at the right intervals

– E.g., decode 30 frames per second of video

• We might have tight deadlines

– E.g., complete task within the next 500 ms

• Conventional process scheduling algorithms focused on

fairness, compromise, and providing the best overall

experience

3

Deadlines in real-time systems

• Start time (release time)

– E.g., response to a sensor: start within 20 ms from sense time

• Stop time (deadline)

– Scheduler must allot enough CPU time to complete

• Hard deadline

– There is no value to the computation if it completes after the

deadline

– Safety critical system: critical start time and deadline

• Soft deadline

– The value of a late result diminishes with time

4

Process types

• Terminating process

– Runs and exits (e.g., service a sensor event)

– How much time does it take to run to completion?

– Deadline = time to finish

• Nonterminating process

– Interested in time between events

• E.g., fill a 4 KB audio buffer every 500 ms

• E.g., decode a video frame every 67 ms

– Compute time = time to compute periodic event

– Deadline = time to have periodic results ready

5

How much can we do?

• Don’t expect magic

• E.g.,

– decoding 1 video frame takes 20 ms

– we want to decode 2 video frames at 30 frames/sec

– We’ll fail: 2 × 30 × 20 = 1200 ms > 1000 ms (1 sec = 1000 ms)

• If T = period, D = deadline, C = compute time:

 C ≤ D ≤ T

6

CS 416: Operating Systems Design February 17, 2014

© 2014 Paul Krzyzanowski 2

Earliest Deadline Scheduling

• Each process tells OS its time deadline

• Scheduler picks the process in closest to its deadline

– Usually one process runs to completion if it has an earlier deadline

– Will be preempted if a process with an even earlier deadline starts

7

Least Slack Scheduling

• Consider remaining time and deadline

• Look not only at the deadline but how much we can

procrastinate

 slack = (time to deadline) – (amount of computation)

• E.g., suppose

 C (compute time) = 5 ms

 D (deadline) = 20 ms from now

 slack = D - C = 15 ms

8

Least Slack vs. Earliest Deadline First

Earliest Deadline First

– We always work on the earliest deadline process and delay others

Least Slack

– Get a balanced result in that we keep the differences to deadlines

balanced

If there’s not enough time for everything:

– EDF: may hit only the early deadlines

– LS: all deadlines may be missed but roughly by the same amount

9

Rate monotonic analysis

• Method of assigning static priorities to periodic processes

• Works with a static priority scheduler

• Must know all real-time processes running at the same

time and their period

• Rate monotonic priority assignment is optimal

– If the it is possible for all deadlines to be met then they will be met

with rate monotonic assignment

10

Assigning priorities

• Highest frequency (smallest period) process gets the

highest priority

• Successively lower frequency processes get lower

priorities

• Scheduling is via a simple priority scheduler

• If two processes have the same priority, they can round-

robin

11

Rate monotonic example

– Process A runs every 50 ms for 20 ms

– Process B runs every 50 ms for 10 ms

– Process C runs every 30 ms for 10 ms

10 50 100

A

B

C

10 50 100

C

B

A

No rate monotonic

priority assignment:

C misses a period!

Rate monotonic analysis:

Schedule C first, then A or B

12

CS 416: Operating Systems Design February 17, 2014

© 2014 Paul Krzyzanowski 3

The End

February 17, 2014 13 © 2014 Paul Krzyzanowski

