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Concurrency 

Concurrent threads/processes (informal) 

– Two processes are concurrent if they run at the same time or if their 

execution is interleaved in any order 

Asynchronous 

– The processes require occasional synchronization 

Independent 

– They do not have any reliance on each other 

Synchronous 

– Frequent synchronization with each other – order of execution is 

guaranteed 

Parallel 

– Processes run at the same time on separate processors 
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Race Conditions 

A race condition is a bug: 
– The outcome of concurrent threads are unexpectedly dependent on 

a specific sequence of events. 

Example 
– Your current bank balance is $1,000. 

– Withdraw $500 from an ATM machine while a $5,000 direct deposit 
is coming in 

Withdrawal 

• Read account balance 

• Subtract 500 

• Write account balance 

Deposit 

• Read account balance 

• Add 5000 

• Write account balance 

Possible outcomes: 

Total balance = $5500, $500, $6000 
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Synchronization 

Synchronization deals with developing techniques to avoid 

race conditions 

 

Something as simple as 

  x = x + 1; 

Compiles to this and may cause a race condition: 

  movl _x (%rip), %eax 

  addl $1, %eax 

  movl %eax, _x (%rip) 

Potential points of 

preemption for a race 

condition 
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Mutual Exclusion 

Critical section: 

Region in a program where race conditions can arise 

Mutual exclusion: 

Allow only one thread to access a critical section at a time 

Deadlock: 

A thread is perpetually blocked (circular dependency on resources) 

Starvation: 

A thread is perpetually denied resources 

Livelock: 

Threads run but with no progress in execution 
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Avoid race conditions with locks 

Withdrawal 

• Acquire(transfer_lock) 

• Read account balance 

• Subtract 500 

• Write account balance 

• Release(transfer_lock) 

Deposit 

• Acquire(transfer_lock) 

• Read account balance 

• Add 5000 

• Write account balance 

• Release(transfer_lock) 

• Grab and release locks around critical sections 

• Wait if you cannot get a lock 

Critical 

Section 

Critical 

Section 

Enter Critical 

Section 
Enter Critical 

Section 

Exit Critical 

Section 

Exit Critical 

Section 
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The Critical Section Problem 

 

Design a protocol to allow threads to enter a critical section 
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Conditions for a solution 

• Mutual exclusion: No threads may be inside the same critical sections 

simultaneously 

• Progress: If no thread is executing in its critical section but one or more threads 

want to enter, the selection of a thread cannot be delayed indefinitely. 

– If one thread wants to enter, it should be permitted to enter. 

– If multiple threads want to enter, exactly one should be selected. 

• Bounded waiting: No thread should wait forever to enter a critical section 

• No thread running outside its critical section may block others 

• A good solution will make no assumptions on: 

– No assumptions on # processors 

– No assumption on # threads/processes 

– Relative speed of each thread 
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Critical sections & the kernel 

• Multiprocessors 

– Multiple processes on different processors may access the kernel 

simultaneously 

– Interrupts may occur on multiple processors simultaneously 

• Preemptive kernels 

– Preemptive kernel: process can be preempted while running in 

kernel mode (the scheduler may preempt a process even if it is running in 

the kernel) 

– Nonpreemptive kernel: processes running in kernel mode cannot 

be preempted (but interrupts can still occur!) 

• Single processor, nonpreemptive kernel 

– Free from race conditions! 
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Solution #1: Disable Interrupts 

Disable all system interrupts before entering a critical 

section and re-enable them when leaving 

Bad! 

– Gives the thread too much control over the system 

– Stops time updates and scheduling 

– What if the logic in the critical section goes wrong? 

– What if the critical section has a dependency on some other 

interrupt, thread, or system call? 

– What about multiple processors? Disabling interrupts affects just 

one processor 

Advantage 

– Simple, guaranteed to work 

– Was often used in the uniprocessor kernels 
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Solution #2: Software Test & Set Locks 

Keep a shared lock variable: 

    while (locked) ; 

   locked = 1; 

   /* do critical section */ 

   locked = 0; 

 

Disadvantage: 

– Buggy! There’s a race condition in setting the lock 

Advantage: 

– Simple to understand. It’s been used for things such as locking 

mailbox files 
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Solution #3: Lockstep Synchronization 

Take turns 

 

 

 

 

 

Disadvantage: 

– Forces strict alternation; if thread 2 is really slow, thread 1 is slowed 

down with it. Turns asynchronous threads into synchronous threads 

Thread 0 

whi l e  ( t ur n ! = 0) ;  

c r i t i c al _s ec t i on( ) ;  

t ur n = 1 ;  

Thread 1 

whi l e  ( t ur n ! = 1) ;  

c r i t i c al _s ec t i on( ) ;  

t ur n = 0 ;  
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Software solutions for mutual exclusion 

• Peterson’s solution (page 207 of text) , Dekker’s, & others 

 

• Disadvantages: 

– Difficult to implement correctly 

Have to rely on volatile data types to ensure that compilers 

don’t make the wrong optimizations 

– Difficult to implement for an arbitrary number of threads 
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Let’s turn to hardware for help 
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Help from the processor 

Atomic (indivisible) CPU instructions that help us get locks 

• Test-and-set 

• Compare-and-swap 

• Fetch-and-Increment 

 

These instructions execute in their entirety: they cannot be 

interrupted or preempted partway through their execution  

15 February 14, 2015 © 2014-2015 Paul Krzyzanowski 

Test & Set 

Set the lock but get told if it already was set (in which case you don’t 

have it) 

   int test_and_set(int *x) { 

   last_value = *x; 

   *x = 1; 

   return last_value; 

  } 

How you use it to lock a critical section (i.e., enforce mutual exclusion): 

whi l e  ( t es t _and_s et ( &l oc k )  == 1)  ;   / *  s pi n  * /  

 /* do critical section */ 

 lock = 0;   /* release the lock */ 

A
T

O
M

IC
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Compare & swap (CAS) 

Compare the value of a memory location with an old value. If they match 

then replace with a new value 

  i nt  c ompar e_and_s wap( i n t  * x ,  i nt  o l d,  i nt  new)  {  

  i nt  s av e = * x ;  

  i f  ( s av e == ol d)   

   * x  = new;  

  r et ur n s av e;   / *  al way s  r e t ur n  l oc at i on c ont ent s  * /  

 }  

How you use it to grab a critical section: 

Avoid the race condition – set locked to 1 only if locked was still set to 0.  

 whi l e  ( c ompar e_and_s wap( &l oc k ed,  0 ,  1 )  ! = 0)  ;  

    / *  s p i n unt i l  l oc k ed == 0 * /  

 / *  i f  we got  her e,  l oc k ed got  s et  t o 1  and we hav e i t  * /  

 / *  do  c r i t i c al  s ec t i on * /  

 l oc k ed = 0;  / *  r e l eas e t he l oc k  * /  

 

A
T

O
M

IC
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Fetch & Increment 

Increment a memory location; return previous value 

   i nt  f et c h_and_i nc r ement ( i n t  * x )  {  

   l as t _v al ue = * x ;  

   * x  = * x  + 1;  

   r et ur n l as t _v al ue;  

  }  

  

A
T

O
M

IC
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Fetch & Increment 

Check that it’s your turn for the critical section 

Ticket lock 

 t i c k e t  = 0;  t ur n  = 0;  

 . . .  

 my t ur n = f et c h_and_ i nc r ement ( &t i c k et ) ;  

whi l e  ( t ur n ! = my t ur n)  ;  

 / *  do  c r i t i c al  s ec t i on * /  

f et c h_and_i nc r ement ( &t ur n) ;  

t i c k e t  

t ur n  
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The problem with spin locks 

• All these solutions require busy waiting 

– Tight loop that spins waiting for a turn: busy waiting or spin lock 

 

• Nothing useful gets done! 

– Wastes CPU cycles 
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Priority Inversion 

• Spin locks may lead to priority inversion 

• The process with the lock may not be allowed to run! 

– Suppose a lower priority process obtained a lock 

– Higher priority process is always ready to run but loops on trying to 

get the lock 

– Scheduler always schedules the higher-priority process 

– Priority inversion 

• If the low priority process would get to run & release its lock, it 

would then accelerate the time for the high priority process to get 

a chance to get the lock and do useful work 

• Try explaining that to a scheduler! 

 

21 February 14, 2015 © 2014-2015 Paul Krzyzanowski 

Priority Inheritance 

• Technique to avoid priority inversion 

• Increase the priority of any process in a critical section to 

the maximum of any process waiting on any resource for 

which the process has a lock 

• When the lock is released, the priority goes to its normal 

level 
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Spin locks aren’t great 

 
Can we block until we can get the critical 

section? 
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How about this? 
publ i c  c l as s  Loc k  

{  

pr i v a t e i nt  v al  = UNLOCKED;  

 pr i v a t e Thr eadQueue wai t Queue = new Thr eadQueue( ) ;  

 

 publ i c  v oi d ac qu i r e( )  {  

  Thr ead me = Thr ead. c ur r ent Thr ead( ) ;  

  whi l e  ( Tes t AndSet ( v al )  == LOCKED)  {  

   wai t Queue. wa i t For Ac c es s ( me) ;   / /  Put  s el f  i n queue  

   Thr ead. s l eep( ) ;    / /  Put  s el f  t o s l eep  

 }  

  / /  Got  t he l oc k  

 }  

 publ i c  v oi d r el eas e( )  {  

  Thr ead nex t  = wa i t Queue. nex t Thr ead( ) ;  

  v al  = UNLOCKED;  

  i f  ( nex t  ! = nul l )  

   nex t . r eady ( ) ;  / /  Wak e up a  wai t i ng t h r ead  

 }  

}   
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Sorry… 

• Accessing the wait queue is a critical section 

– Need to add mutual exclusion 

• Need extra lock check in acquire 

– Thread may find the lock busy 

– Another thread may release the lock but before the first thread 

enqueues itself 

 

• This can get ugly! 
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Semaphores 

• Count # of wake-ups saved for future use 

• Two atomic operations: 

down(sem s) { 

 if (s > 0) 

  s = s – 1; 

 else 

  sleep on event s 

} 

 
up(sem s) { 

 if (someone is waiting on s) 

  wake up one of the threads 

 else 

  s = s + 1; 

} 

 

//initialize 

mutex = 1; 

 

down(&mutex) 

 

// critical section 

 

up(&mutex) 

 

     Binary semaphore 
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Semaphores 

Count the number of threads that may enter a critical 

section at any given time. 

– Each down decreases the number of future accesses 

– When no more are allowed, processes have to wait 

– Each up lets a waiting process get in 
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Producer-Consumer example 

• Producer 

– Generates items that go into a buffer 

– Maximum buffer capacity = N 

– If the producer fills the buffer, it must wait (sleep) 

 

• Consumer 

– Consumes things from the buffer 

– If there’s nothing in the buffer, it must wait (sleep) 

 

• This is known as the Bounded-Buffer Problem 
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Producer-Consumer example 
sem mut ex=1,  empt y=N,  f ul l =0;  

pr oducer ( )  {  

 f or  ( ; ; )  {  

  pr oduce_i t em( &i t em) ;  / /  pr oduce somet hi ng  

  down( &empt y) ;    / /  decr ement  empt y count   

  down( &mut ex) ;    / /  s t ar t  c r i t i cal  sect i on  

  ent er _i t em( i t em) ;   / /  put  i t em i n buf f er   

  up( &mut ex) ;     / /  end cr i t i cal  sect i on  

  up( &f ul l ) ;     / /  +1 f ul l  s l ot   

 }  

}  

consumer ( )  {  

 f or  ( ; ; )  {  

  down( &f ul l ) ;    / /  one l ess i t em  

  down( &mut ex) ;    / /  s t ar t  c r i t i cal  sect i on  

  r emove_i t em( i t em) ;   / /  get  t he i t em f r om t he buf f er   

  up( &mut ex) ;     / /  end cr i t i cal  sect i on 

  up( &empt y) ;     / /  one mor e empt y  s l ot  

  consume_i t em( i t em) ;  / /  consume i t  

 }  

}  

29 February 14, 2015 © 2014-2015 Paul Krzyzanowski 

Readers-Writers example 

• Shared data store (e.g., database) 

• Multiple processes can read concurrently 

• Allow only one process to write at a time 

– And no readers can read while the writer is writing 
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Readers-Writers example 
sem mut ex =1;        / /  c r i t i c al  s ec t i ons  used onl y  by  t he r eader   

sem c anwr i t e=1;     / /  c r i t i c al  s ec t i on f or  N r eader s  v s .  1 wr i t er   

i nt  r eadc ount  = 0;  / /  number  of  concur r ent  r eader s   

 

wr i t er ( )  {  

   f or  ( ; ; )  {  

      down( &c anwr i t e) ;   / /  bl oc k  i f  we cannot  wr i t e  

      / /  wr i t e dat a  

      up( &c anwr i t e) ;    / /  end c r i t i c al  s ec t i on  

   }  

}  
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Readers-Writers example 
sem mut ex =1;        / /  c r i t i c al  s ec t i ons  used onl y  by  t he r eader   

sem c anwr i t e=1;     / /  c r i t i c al  s ec t i on f or  N r eader s  v s .  1 wr i t er   

i nt  r eadc ount  = 0;  / /  number  of  concur r ent  r eader s   

 

r eader ( )  {  

   f or  ( ; ; )  {  

      down( &mut ex ) ;  

      r eadc ount ++;  

      i f  ( r eadc ount  == 1)   / /  f i r s t  r eader  

         down( c anwr i t e) ;   / /  s l eep or  di s al l ow t he wr i t er  f r om wr i t i ng  

      up( &mut ex ) ;  

      / /  do t he r ead 

      down( &mut ex ) ;  

      r eadc ount - - ;  

      i f  ( r eadc ount  == 0)  

         up( c anwr i t e) ;  / /  no mor e r eader s !  Al l ow t he wr i t er  ac cess  

      up( &mut ex ) ;  

      / /  ot her  s t uf f  

   }  

}  

c
ri
ti
c
a
l 

s
e
c
ti
o
n

 
c
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c
a
l 

s
e
c
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o
n
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Event Counters 

Avoid race conditions without using mutual exclusion 

An event counter is an integer 

Three operations: 

– read(E):   return the current value of event counter E 

– advance(E):  increment E (atomically) 

– await(E, v):   wait until E ≥ v 
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Producer-Consumer example 
#de f i ne  N 4        / /  f ou r  s l o t s  i n  t he  bu f f e r  

ev en t _c oun t e r  i n=0 ;   / /  number  o f  i t ems  i ns e r t ed  i n t o  bu f f e r  

ev en t _c oun t e r  ou t =0 ;  / /  number  o f  i t ems  r emov ed  f r om bu f f e r  

 

p r oduc er ( )  {  

 i n t  i t em,  s equenc e=0 ;  

 f o r  ( ; ; )  {  

  p r oduc e_ i t em( &i t em) ;  / /  p r oduc e  s omet h i ng  

  s equenc e++;     / /  i t em #  o f  i t em p r oduc ed  

  awa i t ( ou t ,  s equenc e - N) ;   (0≥-3), (0≥-2), … 

  en t e r _ i t em( i t em) ;   / /  pu t  i t em i n  bu f f e r  

  adv anc e( &i n ) ;    

 }  

}  

c ons umer ( )  {  

 i n t  i t em,  s equenc e=0 ;  

 f o r  ( ; ; )  {  

  s equenc e++;     / /  i t em #  we  wan t  t o  c ons ume  

  awa i t ( i n ,  s equenc e) ;  / /  wa i t  un t i l  t ha t  i t em i s  p r es en t ( 0≥1)  

  r emov e_ i t em( i t em) ;      / /  ge t  t he  i t em f r om t he  bu f f e r  

  adv anc e( &ou t ) ;     

  c ons ume_ i t em( i t em) ;   / /  c ons ume i t  

 }  

}  
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Producer-Consumer example 
#de f i ne  N 4        / /  f ou r  s l o t s  i n  t he  bu f f e r  

ev en t _c oun t e r  i n=0 ;   / /  number  o f  i t ems  i ns e r t ed  i n t o  bu f f e r  

ev en t _c oun t e r  ou t =0 ;  / /  number  o f  i t ems  r emov ed  f r om bu f f e r  

 

p r oduc er ( )  {  

 i n t  i t em,  s equenc e=0 ;  

 f o r  ( ; ; )  {  

  p r oduc e_ i t em( &i t em) ;  / /  p r oduc e  s omet h i ng  

  s equenc e++;     / /  i t em #  o f  i t em p r oduc ed  

  awa i t ( ou t ,  s equenc e - N) ;   (0≥-3), (0≥-2), … 

  en t e r _ i t em( i t em) ;   / /  pu t  i t em i n  bu f f e r  

  adv anc e( &i n ) ;    

 }  

}  

 

Suppose the producer runs for a while and the consumer does not: 

Iteration 1:  out=0, sequence=1, await(0, 1-4): continue since 0 ≥ -3 ⇒ in=1 

Iteration 2:  out=0, sequence=2, await(0, 2-4): continue since 0 ≥ -2 ⇒ in=2 

Iteration 3:  out=0, sequence=3, await(0, 3-4): continue since 0 ≥ -1 ⇒ in=3 

Iteration 4:  out=0, sequence=4, await(0, 4-4): continue since 0 ≥ 0 ⇒ in=4 

Iteration 5:  out=0, sequence=5, await(0, 5-4): wait since 0 < 1 
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Producer-Consumer example 
#de f i ne  N 4        / /  f ou r  s l o t s  i n  t he  bu f f e r  

ev en t _c oun t e r  i n=0 ;   / /  number  o f  i t ems  i ns e r t ed  i n t o  bu f f e r  

ev en t _c oun t e r  ou t =0 ;  / /  number  o f  i t ems  r emov ed  f r om bu f f e r  

 

c ons umer ( )  {  

 i n t  i t em,  s equenc e=0 ;  

 f o r  ( ; ; )  {  

  s equenc e++;     / /  i t em #  we  wan t  t o  c ons ume  

  awa i t ( i n ,  s equenc e) ;  / /  wa i t  un t i l  t ha t  i t em i s  p r es en t  ( 0≥1)  

  r emov e_ i t em( i t em) ;      / /  ge t  t he  i t em f r om t he  bu f f e r  

  adv anc e( &ou t ) ;     

  c ons ume_ i t em( i t em) ;   / /  c ons ume i t  

 }  

}  

 

Suppose the consumer runs first: 

 

Iteration 1:  sequence = 1, await(0, 1) ⇒ sleep since 0 < 1 

 

When the producer runs its first iteration, it will increment in 

The consumer’s await will wake up since it’s now await(1,1) and 1 ≥ 1 
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Condition Variables / Monitors 

• Higher-level synchronization primitive 

• Implemented by the programming language / APIs 

• Two operations: 

– wait (condition_variable) 

• Block until condition_variable is “signaled” 

 

– signal(condition_variable) 

• Wake up one process that is waiting on the condition variable 

• Also called notify 
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Synchronization 

Part II: Inter-Process Message Passing 
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Communicating processes 

• Must: 

– Synchronize 

– Exchange data 

 

• Message passing offers: 

– Data communication 

– Synchronization (via waiting for messages) 

– Works with processes on different machines 
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Message passing 

• Two primitives: 

– send(destination, message) 

– receive(source, message) 

 

• Operations may or may not be blocking 
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Producer-consumer example 
#def i ne N 4   / /  number  of  s l ot s  i n t he buf f er  * /  

 

consumer ( )  {  

 i nt  i t em,  i ;  

 mes sage m;  

 

 f or  ( i =0;  i  < N;  ++i )  

  send( pr oduc er ,  &m) ;  / /  send N empt y  mess ages   

 f or  ( ; ; )  {  

  r ec ei ve( pr oducer ,  &m) ;  / /  get  a mess age wi t h t he i t em  

  ex t r ac t _i t em( &m,  &i t em) ;  / /  t ake i t em out  of  mess age  

  send( pr oduc er ,  &m) ;  / /  send an empt y  r epl y   

  consume_i t em( i t em) ;  / /  cons ume i t   

 }  

}  

pr oducer ( )  {  

 i nt  i t em;  

 mes sage m;  

 

 f or  ( ; ; )  {  

  pr oduce_i t em( &i t em) ;   / /  pr oduc e somet hi ng  

  r ec ei ve( c onsumer ,  &m) ;   / /  wai t  f or  an empt y  mes sage  

  bui l d_mes sage( &m,  i t em) ;  / /  cons t r uc t  t he mes sage  

  send( cons umer ,  &m) ;   / /  send i t  of f  

 }  

}  
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Messaging: Rendezvous 

• Sending process blocked until receive occurs 

• Receive blocks until a send occurs 

 

• Advantages: 

– No need for message buffering if on same system 

– Easy & efficient to implement 

– Allows for tight synchronization 

• Disadvantage: 

– Forces sender & receiver to run in lockstep 
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Messaging: Direct Addressing 

• Sending process identifies receiving process 

• Receiving process can identify sending process 

– Or can receive it as a parameter 

S0 R0 

S0 

S1 

S2 

R0 
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Messaging: Indirect Addressing 

• Messages sent to an intermediary data structure of FIFO 

queues 

• Each queue is a mailbox 

• Simplifies multiple readers 
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Mailboxes 

S0 R0 mailbox 

S0 R1 mailbox 

R2 

R0 

R1 mailbox 

R2 

R0 

S1 R0 mailbox 

S0 

S2 
Single sender, single reader 

Single sender, multiple readers Multiple senders, multiple readers 

Multiple senders, single reader 

S1 

S0 

S2 
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Other common IPC mechanisms 

• Shared files 

– File locking allows concurrent access control 

– Mandatory or advisory 

• Signal 

– A simple poke 

• Pipe 

– Two-way data stream using file descriptors (but not names) 

– Need a common parent or threads in the same process 

• Named pipe (FIFO file) 

– Like a pipe but opened like a file 

• Shared memory 
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Conditions for deadlock 

Four conditions must hold 

1. Mutual exclusion 

– Only one thread can access a critical section (resource) at a time 

2. Hold and wait 

– A thread holds a resource but waits for another resource 

3. Non-preemption of resources 

– Resources can only be released voluntarily 

4. Circular wait 

– There is a cyclic dependency of threads waiting on resources 
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Deadlock 

• Resource allocation 

– Resource R1 is allocated to process P1: assignment edge 

  

 

 

– Resource R1 is requested by process P1: request edge 

 

 

 

• Deadlock is present when the graph has cycles 

R1 P1 

R1 P1 

holds 

wants 
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Deadlock example 

 

 

 

 

 

 

 

Circular dependency among four processes and four resources 

leads to deadlock 
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Dealing with deadlock 

• Deadlock prevention 

– Ensure that at least one of the necessary conditions cannot hold 

• Deadlock avoidance 

– Provide advance information to the OS on which resources a 

process will request. 

– OS can then decide if the process should wait 

– But knowing which resources will be used (and when) is hard! 

(impossible, really) 

• Deadlock detection 

– Detect when a deadlock occurs and then deal with it 

• Ignore the problem 

– Let the user deal with it (most common approach) 
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The End 
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