
Operating Systems
05. Threads

Paul Krzyzanowski

Rutgers University

Spring 2015

1 February 9, 2015 © 2014-2015 Paul Krzyzanowski

Thread of execution

Single sequence of instructions

– Pointed to by the program counter (PC)

– Executed by the processor

Conventional programming model & OS structure:

– Single threaded

– One process = one thread

February 9, 2015 © 2014-2015 Paul Krzyzanowski 2

Multi-threaded model

A thread is a subset of a process:

– A process contains one or more kernel threads

Share memory and open files

– BUT:

separate program counter, registers, and stack

– Shared memory includes the heap and global/static

data

– No memory protection among the threads

Preemptive multitasking:

– Operating system preempts & schedules threads

heap

stack 1

stack 2

data+bss

text

February 9, 2015 © 2014-2015 Paul Krzyzanowski 3

Sharing

Threads share:

• Text segment (instructions)

• Data segment

(static and global data)

• BSS segment

(uninitialized data)

• Open file descriptors

• Signals

• Current working directory

• User and group IDs

Threads do not share:

• Thread ID

• Saved registers, stack pointer,

instruction pointer

• Stack

(local variables, temporary

variables, return addresses)

• Signal mask

• Priority

(scheduling information)

February 9, 2015 © 2014-2015 Paul Krzyzanowski 4

Why is this good?

Threads are more efficient

– Much less overhead to create: no need to create new copy of

memory space, file descriptors, etc.

Sharing memory is easy (automatic)

– No need to figure out inter-process communication mechanisms

Take advantage of multiple CPUs – just like processes

– Program scales with increasing # of CPUs

– Take advantage of multiple cores

February 9, 2015 © 2014-2015 Paul Krzyzanowski 5

Implementation

Process info (Process Control Block) contains one or more

Thread Control Blocks (TCB):

– Thread ID

– Saved registers

– Other per-thread info (signal mask, scheduling parameters)

PCB PCB PCB

TCB

TCB

TCB

TCB TCB TCB

February 9, 2015 © 2014-2015 Paul Krzyzanowski 6

Scheduling

A thread-aware operating system scheduler schedules

threads, not processes

– A process is just a container for one or more threads

February 9, 2015 © 2014-2015 Paul Krzyzanowski 7

Scheduling Challenges

Scheduler has to realize:

• Context switch among threads of different processes is more expensive

– Flush cache memory (or have memory with process tags)

– Flush virtual memory TLB (or have tagged TLB)

– Replace page table pointer in memory management unit

• CPU Affinity

– Rescheduling threads onto a different CPU is more expensive

– The CPU’s cache may have memory used by the thread cached

– Try to reschedule the thread onto the same processor on which it last ran

February 9, 2015 © 2014-2015 Paul Krzyzanowski 8

Process vs. Thread context switch

linux/arch/i386/kernel/process.c:

/* Re-load page tables for a new address space */

{

 unsigned long new_cr3 = next->tss.cr3;

 if (new_cr3 != prev->tss.cr3)

 asm volatile("movl %0,%%cr3": :"r" (new_cr3));

}

A thread switch within the same process is not a full context switch

– the address space (memory map) does not get switched

This statement tests if the new task has the same memory map as

the current one. If so, we’re switching threads and will not run the

instruction to switch the memory mapping tables

February 9, 2015 © 2014-2015 Paul Krzyzanowski 9

Multi-threaded programming patterns

Single task thread

– Do a specific job and then release the thread

Worker threads

– Specific task for each worker thread

– Dispatch task to the thread that handles it

Thread pools

– Create a pool of threads a priori

– Use an existing thread to perform a task; wait if no threads

available

– Common model for servers

February 9, 2015 © 2014-2015 Paul Krzyzanowski 10

Kernel-level threads vs. User-level threads

Kernel-level

– Threads supported by operating system

– OS handles scheduling, creation, synchronization

User-level

– Library with code for creation, termination, scheduling

– Kernel sees one execution context: one process

– May or may not be preemptive

February 9, 2015 © 2014-2015 Paul Krzyzanowski 11

User-level threads

Advantages

– Low-cost: user level operations that do not require switching to the

kernel

– Scheduling algorithms can be replaced easily & custom to app

– Greater portability

Disadvantages

– If a thread is blocked, all threads for the process are blocked

• Every system call needs an asynchronous counterpart

– Cannot take advantage of multiprocessing

February 9, 2015 © 2014-2015 Paul Krzyzanowski 12

You can have both

User-level thread library on top of multiple kernel threads

1:1 – kernel threads only

 (1 user thread = 1 kernel thread

N:1 – user threads only

 (N user threads on 1 kernel thread/process)

N:M – hybrid threading

 (N user threads on M kernel threads)

February 9, 2015 © 2014-2015 Paul Krzyzanowski 13

pthreads: POSIX Threads

• POSIX.1c, Threads extensions

(IEEE Std 1003.1c-1995)

– Defines API for managing threads

• Linux: native POSIX Thread Library

• Also on Solaris, Mac OS X, NetBSD, FreeBSD

• API library on top of Win32

February 9, 2015 © 2014-2015 Paul Krzyzanowski 14

Using POSIX Threads

Create a thread

 pthread_t t;

 pthread_create(&t, NULL, func, arg)

– Create new thread t

– Start executing function func(arg)

Join two threads (wait for thread t to terminate)

 void *ret_val;

 pthread_join(t, &ret_val);

– Thread t exits via return or pthread_exit

No parent/child relationship among threads!

– Any one thread may wait (join) on another thread

February 9, 2015 © 2014-2015 Paul Krzyzanowski 15

A different approach to threads

• Threads force a highly-shared model

– Memory map, signals, open files, current directory, etc. all shared

• Processes force a non-shared model

– Separate memory, open files, etc.

• What if we allow the user to specify what is shared when

a new process is created?

– Then we don’t need threads since processes can share all memory

if they want to … and open files … and anything else

February 9, 2015 © 2014-2015 Paul Krzyzanowski 16

Linux threads

• Linux has no concept of a thread

• All threads implemented as standard processes

– No special scheduling semantics

– All processes defined in the kernel by task_struct

• Support thread-like behavior via clone system call

– Designed to implement threads

– A process can control what gets shared with a new process

– Based on Plan 9’s rfork system call

February 9, 2015 © 2014-2015 Paul Krzyzanowski 17

Linux clone() system call

• Clone a process, like fork, but:

– Specify function that the child will run (with argument)

• Child terminates when the function returns

– Specify location of the stack for the child

– Specify what’s shared:

• Share memory (otherwise memory writes use new memory)

• Share open file descriptor table

• Share the same parent

• Share root directory, current directory, and permissions mask

• Share namespace (mount points creating a directory hierarchy)

• Share signals

• And more…

• Used by pthreads

February 9, 2015 © 2014-2015 Paul Krzyzanowski 18

Threading in hardware

• Hyper-Threading (HT) vs. Multi-core vs. Multi-processor

• One core = One CPU

• Hyper-Threading

– One physical core appears to have multiple processors

• Looks like multiple CPUs to the OS

• Separate registers & execution state

– Multiple threads run but compete for execution unit

– Events in the pipeline switch between the streams

– Threads do not have to belong to the same process

• But the processors share the same cache

• Performance can degrade if two threads compete for the cache

– Works well with instruction streams that have large memory latencies

February 9, 2015 © 2014-2015 Paul Krzyzanowski 19

Example CPU

• Intel® Core™ i7-5960X Extreme Edition (Haswell-E)

• 3.0 GHz up to 3.5 GHz (Turbo)

• 2.6B 22 nm Tri-Gate 3-D transistors

• 8 cores; 16 threads

• Per-Core caches:
– 512 KB L1 cache (128 KB data; 128 KB instruction)

– 2 MB L2 cache

• 20 MB shared L3 cache

February 9, 2015 © 2014-2015 Paul Krzyzanowski 20

17.6 mm

2
0

.2
 m

m

Multi-core architecture

Shared L3 cache

external memory
CPU Die

CPU

Core

L1 cache

L2

cache

64 KB

Sample

Sizes
(Sandy

Bridge)

256 KB

12 MB

February 9, 2015 © 2014-2015 Paul Krzyzanowski 21

CPU

Core

L1 cache

L2

cache

CPU

Core

L1 cache

L2

cache

CPU

Core

L1 cache

L2

cache

CPU

Core

L1 cache

L2

cache

CPU

Core

L1 cache

L2

cache

L3 cache (shared)

Stepping on each other

• Threads share the same data

• Mutual exclusion is critical

• Allow a thread be the only one to grab a critical section

– Others who want it go to sleep

pthread_mutex_t = m = PTHREAD_MUTEX_INITIALIZER;

 ...

pthread_mutex_lock(&m);

/* modify shared data */

pthread_mutex_unlock(&m);

February 9, 2015 © 2014-2015 Paul Krzyzanowski 22

The End

February 9, 2015 23 © 2014-2015 Paul Krzyzanowski

