Operating Systems Design

01. Introduction

Paul Krzyzanowski

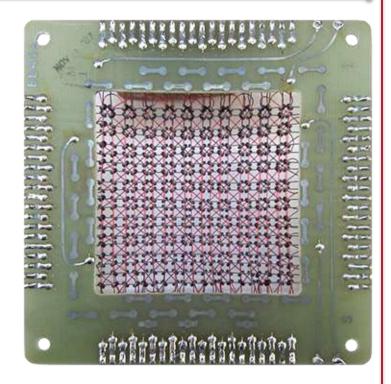
Rutgers University

Spring 2015

In the beginning...

There were no operating systems

"Preparing ENIAC for a series of runs was an incredibly involved process. First, detailed instructions had to be written defining the problem and a procedure for solving it. These instructions were programmed by adjusting switches manually and inserting thousands of cables into as many as forty large plug boards. A team of five operators might work several days on the external wiring and many more days searching for errors and correcting them."


— Breakthrough to the Computer Age, Harry Wulforst, Charles Scribner's & Sons Pub., 1982

Programming the ENIAC

Ferrite Core Memory

- Fast, random-access memory
 - Non-volatile
 - Write-after-read to preserve bit
- First used in MIT's Whirlwind-1
 - -1953
 - $-32 \times 32 \times 16$ bits
- Used through ~1980

Late 1940s – 1950s

- Stored program concept: reload a program
- Reusable code ("subroutines")
- IBM SHARE (Society to Help Alleviate Redundant Effort)
- The OS emerges
 - I/O Control System (IOCS): Common I/O routines for device access
 - Precursor to device drivers
 - Batch systems (1956)
 - "Control cards" after a deck of punched cards to terminate one job and prepare for the next
 - Programmatic transition to reduce overhead of starting new jobs
 - Branch to a location in the OS that would cause the next program to get loaded and run
 - Job control languages to define resource needs

The Interrupt

- 1951 UNIVAC I: exception handling
 - Transfer control on arithmetic overflow

- 1956 UNIVAC 1103A
 - Hardware interrupt support
 - Interrupt writes PC to memory location & transfers control to an Interrupt Service Routine

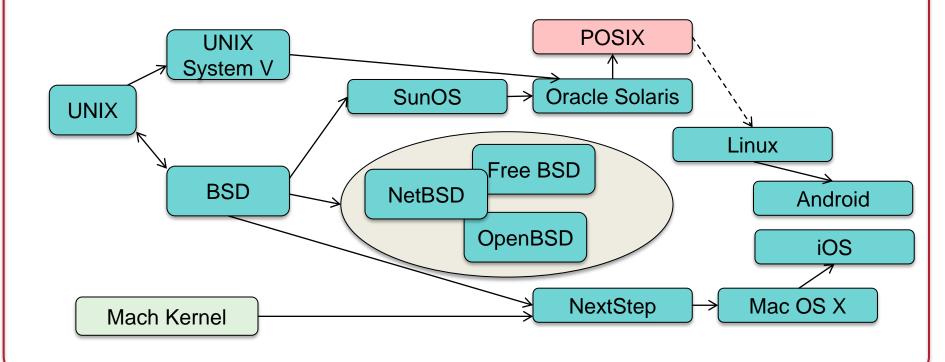
- Goal: improve throughput
 - Use every possible second of CPU time
- Multiprogramming
 - Keep several programs in memory at once; switch between them
 - Works because of the speed mismatch between I/O and CPU
- 1961: Time sharing: preemption
 - CTSS (Compatible Time-Sharing System): Process scheduling
- 1962: the System Call (Atlas I Computer, Manchester)
 - Privileged & unprivileged modes

- Interactive access
- User accounts and passwords
- Direct storage access (file systems)
- Transaction processing systems (SABRE)
 - IBM & American Airlines

- 1961: DEC PDP-1 first minicomputer (\$125,000+)
- 1964: IBM System/360
 - PCP/360: sequential jobs (batch)
 - MFT: Multiple job system, fixed number of tasks
 - MVT: Multiple jobs, variable number of tasks (direct memory)
 - Direct Address Translation
 (precursor of virtual memory & the Memory Management Unit)
 - Channels: specialized processors for transferring data between main memory and an I/O device (precursor of DMA)

December 9, 1968: The Mother of All Demos

- Douglas Engelbart
 Stanford Research Institute (SRI), Augmentation Research Center
- Presented at Fall Joint Computer Conference
- Introduced
 - Computer mouse
 - Windows
 - Video conferencing
 - WYSIWYG word processing (with cut & copy) & embedded objects
 - Collaborative editing
 - Version control
 - Hypertext



1964-1970: Multics

- Memory mirrored onto the disk and available via the file system
- Dynamic linking for code & data segments
- Interprocess communication via shared segments
- Multiprocessor support
- On-line reconfiguration of system HW without downtime
- Hierarchical security model using protection rings
- Hierarchical file system with arbitrary file names
- Symbolic links
- Command processor not part of the operating system
- Written in a high-level language
 - EPL, a subset of PL/1 with extensions
- I/O redirection to files and programs ("pipes")

Late 1960s – 1970s

- 1970s: UNIX
 - Portable operating system
 - Written in an efficient high level language (C)
 - The UNIX programming environment: shell, pipes, "tools"

1972: Virtual Machines

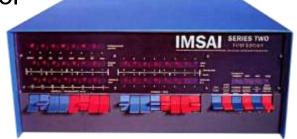
- 1972: Virtual Machines (VM/370)
 - Run multiple operating systems on one machine
 - Each "machine" presents the same System/370 architecture
 - Hypervisor
 - Control program that runs on the physical hardware and creates the virtual machines
 - Intercepts & interprets all I/O operations and privileged instructions
 - Partitions memory

1973: Xerox Alto

- A personal computer (dedicated to one user)
 - Desktop UI metaphor and a mouse
 - Inspired by Douglas Englebart's On-Line System
- Specs
 - TI bit-slice processor
 - 128-512 KB RAM
 - 2.5MB removable hard disk
 - Ethernet
 - B&W CRT
 - 3-button mouse
 - Small fridge-sized cabinet
- Inspired the Mac & Microsoft Windows

1971 - 1975

- Microprocessors emerge
 - Intel $4004 \rightarrow 8008 \rightarrow 8080$
 - Zilog Z-80, MOS Technology 6502, Motorola 6800, 6809
 - CP/M: dominant OS for 8080 family of machines
 - CCP: command interpreter
 - BDOS: file operations, printing, and console I/O
 - BIOS: character I/O, disk sector read/write


Initial cost

8080: \$360

6502: \$25

Late 1970s: Home PCs

- 1975: Early PCs targeted at hobbyists
 - Connect your own teletype or use a front panel
 - Build it from a kit
 - Write your own OS drivers

- 1977: Ready-to-use personal computers
 - Apple II
 - Commodore PET
 - Radio Shack TRS-80 Model I
 - Followed by:
 - Atari 400, Atari 800, TI-99/4A,
 Commodore Vic 20, Commodore 64, ...

- 1981: IBM PC
 - Open architecture; Microsoft OS
 - Only proprietary component was the BIOS
- 1982: BIOS was reverse engineered
 - PC clones (Compaq, Columbia, Dell, HP, ...)

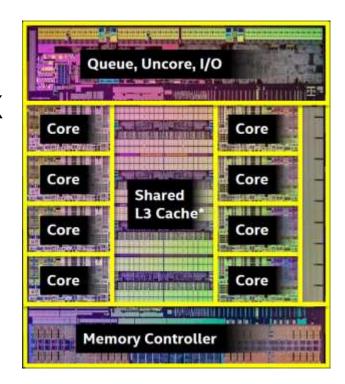
1984: Apple Macintosh

- Client-server networking
 - Personal workstations
 - Network file systems
- 1985: Intel 80386
 - Virtual memory with paging
 - Virtual 8086 mode for multiple legacy programs

- 1990: Windows 3.0
 - Takes advantage of virtual memory provided by 80386
- 1993: Window NT
 - New OS built from scratch
- Open Source Operating Systems
 - Linux, FreeBSD, NetBSD, OpenBSD
- 1995: Windows 95
 - Built-in Internet support (networking usually via modem)

- PCI bus: Plug & Play hardware
 - Adding hardware becomes easy
- Laptops become mainstream: power usage is important

1993: NCSA Mosaic – the web browser


- Network PC, thin clients
 - Failed ... but resurrected with the Google Chromebook

- PC-based machine virtualization
 - Virtualization support added by Intel & AMD (2006)
 - Virtual machine migration
- Cloud computing, on-demand data centers
- Security
 - Hardware authentication, Storage encryption, digital rights management: Trusted Platform Module
 - Personal firewalls
 - Address space layout randomization

Multi-core Architectures

- 2005: Intel Introduces dual core Pentium D
 - 90nm process Pentium Extreme Edition
 - 230 million transistors
 - 2 MB L2 cache

- Late 2014: Intel Haswell-E i7-5960X
 - 8 Cores
 - Hyperthreading
 - 2.6 Billion 22nm tri-gate 3-D transistors
 - 2133 MHz DDR4 memory interface
 - 20 MB L3 cache (shared across cores)

- Focus on mobility
 - Tablets
 - 1991 AT&T EO Personal Communicator
 - 1999: Microsoft Tablet PC
 - 2010: Apple iPad
 - PDAs → smartphones
 - iOS, Android, BlackBerry OS, Windows Mobile
- Increased focus on embedded systems
 - Machine-to-machine (M2M), Internet of Things, Arduino, ...
- Cloud computing
 - Large scale data centers, reconfigurable virtual machines

The Operating System

What is an operating system?

- The first program
- A program that lets you run other programs
- A program that provides controlled access to resources:
 - CPU
 - Memory
 - Display, keyboard, mouse
 - Persistent storage
 - Network

This includes: naming, sharing, protection, communication

The Operating System

App App App App App App

OS

Ethernet Wi-Fi Disk USB etc.

The End