Internet Technology

3/21/2016

Internet Technology
08. Routing

Paul Krzyzanowski
Rutgers University

Spring 2016

Routing algorithm goal

last hop router =
destination rout
7

router}

L LAN)

Routing algorithm: given routers connected with links,
what is a good (best?) path from a source to a destination router

good = least cost
cost = time or money

March 21, 2016 ©S 352 © 20132016 Paul Krzyzanowski

March 21, 2016 €S 352 © 2013-2016 Paul Krzyzanowski 2

Routing graphs, neighbors, and cost

Path cost, least-cost path, & shortest path

Graph G = (N, E) N = set of nodes (routers)
E = set of edges (links)

Each edge = pair of connected nodes in N
Node y is a neighbor of node x if (x, y) € E

Cost Each edge has a value representing the cost of the link
c(x, y) = cost of edge between nodes x & y
if(x,y) € E, thenc(x,y) = =

We will assume c(x, y) = c(y, X)

Apath in a graph G = (N, E) is a sequence of nodes (xy, X, ..., X,)
such that each of the pairs (X, Xp), (X, Xa), -, (Xp.1, X;) are edgesin E.
The cost of a path is the sum of edge costs: c(x,, X,), C(Xp, Xs), ... C(X,.1, X;)

There could be multiple paths between two nodes, each with a different cost.
One or more of these is a least-cost path.

Example: the least-cost path between u and w is (u, X, y, W) = c(u, X, y, w) = 3
If all edges have the same cost, then least-cost path = shortest path

March 21, 2016 €5 352 © 20132016 Paul Krzyzanowski

March 21, 2016 €5 352 © 20132016 Paul Kizyzanowski a

Algorithm classifications

Additional algorithm classifications

(Global routing algorithms

— Compute the least-cost path using complete knowledge of the network
— The algorithm knows the connectivity between all nodes & costs

— Centralized algorithm

(These are link-state (LS) algorithms

~

Gecentralized routing algorithms
— No node has complete information about the costs of all links
— Anode initially knows only its direct links
— lterative process: calculate & exchange info with neighbors

« Eventually calculate the least-cost path to a destination
tDistance-Vector (DV) algorithm

v
<

(Static routing algorithms 0
— Routes change very slowly over time

« Dynamic routing algorithms
— Change routing paths as network traffic loads or topology change

q

Load-sensitive algorithms
— Link costs vary to reflect the current level of congestion

« Load-insensitive algorithms

&— Ignore current or recent levels of congestion j

March 21, 2016 €S 352 © 20132016 Paul Krzyzanowski

Paul Krzyzanowski

March 21, 2016 €5 352 © 2013.2016 Paul Kizyzanowski 6

Internet Technology

Link-State (LS): Dijkstra’s Algorithm

* Assumption:
Entire network topology & link costs are known
— Each node broadcasts link-state packets to all other nodes
— All nodes have an identical, complete view of the network

« Compute least-cost path from one node to all other nodes
in the network

« Iterative algorithm
— After k iterations, least-cost paths are known to k nodes

March 21, 2016 ©S 352 © 20132016 Paul Krzyzanowski 7

(1)
Dijkstra’s Algorithm
DW): 5 o~
cost of least-cost path from source to v v 3 W
p(v): 2 5

previous node (neighbor of v) along tht

least-cost path to v 2 3 1
N Y ‘
N

su‘bsel of nodes for which we found the 1 2

least-cost path (
Skip: ue N’ X y

Loop until = N:
Find a node n not in N’ such that D(n) is
aminimum step | N | DW).p() | DW).pw) | DXPK | DY).PY) | DE).PE)
— Node x has minimum D(n) [Lead costpam—

0 |u 2u 5u 1u w w
add nto N* ¥
N'={u,) 1 [w= ,2u 4x , 2x L

for each neighbor m of n not in N
for each neighbor of node x
D(m) = min(D(m), D(n) + ¢(n, m))
new cost = old cost or cost through x

We now

Costtovis Costtow

if D(m) changed, set p(m) = n ot better is better onore ¥ have a
through x through x path to y
. J/
Warch 21, 2016 5 35210 2013.2016 Paul Kizyzanowski B
(. N o 0
Dijkstra’s Algorithm
D(v): 5 -
cost of least-cost path from source to v v 3 W
pv): 2 > 5
previous node (neighbor of v) along the
least-cost path to v 2 3 1
N u z
subset of nodes for which we found the 1\\ r 2
least-cost path N 1
X y

Loop until N’=N:
find n not in N’ such that D(n) is a

minimum step N D(v).p(v) | DW), p) | DXP() | DY)PY) | D(2).p@)
— Node v has minimum D(n)
0 |u 2,u 5u 1u 3 -
addnto N’
N'= (0, %y, v} 1 |w 2u 4x 2x w0
for each neighbor m of n not in N'* 2 |wy 2u 3y ay
for each neighbor of node v
D(m) = min(D(m), D(n) + c(n,m)) 3 [ww 3y 4y
new cost = old cost or cost through x
OB CRETE L) S0 No improvement No change: zis
(2+43) < 3 not a neighbor
. J/
March 21, 2016 5352 0 2013.2016 Paul Krzyzanowsli u

Paul Krzyzanowski

3/21/2016

(7
.) .
Dijkstra’s Algorithm
D(v): s
cost of least-cost path from source to v v 3
pv):
previous node (neighbor of v) along the
least-cost path to v 2
.
: u S z
subset of nodes for which we found the 1
least-cost path 1
PV X
Initialize:
N’= current node
N'={u} step| N | DO).PW) | DW). piw) D(@2).p(2)
0 |u 2u 5u w
for all nodes v
if vis a neighbor of u
D(v) = c(u, v)
else
D(v) =co
Q J
Warcn 21, 2016 5 352 © 2013:2016 Paul Kizyzanowshi s
(. s . 7
Dijkstra’s Algorithm
D(v): 5 -
cost of least-cost path from source to v v 3
p(v):
previous node (neighbor of v) along the
least-cost path to v 2
: u S Z
subset of nodes for which we found the 1
least-cost path 1
Loop until N’=N:
find n not in N’ such that D(n) is a
minimum step N D). p(v) | D(W). pw) D@).p(2)
— Nodes v &y have minimum D(n)
Pick any one: we choose y 0 |u 2u | 5u | o
add nto N’ 1 |wx 2u 4 Le w
N'={u, %, y} 2 |wf 2u 3y 4y
for each neighbor m of n not in N* 4
for each neighbor of node y
D(m) = min(D(m), D(n) + c(n, m)) Costtow Skip: x and y We now
new cost = old cost or cost through x is even are in N have a
if D(m) changed, set p(m) =n better path to z
\ through y
Warcn 21, 2016 5 352 © 2013.2016 Paul Kizyzanowshi 10

p
Dijkstra’s Algorithm

D(v): 5
cost of least-cost path from source to v

pv):

previous node (neighbor of v) along the

least-cost path to v 2
N U

least-cost path

Loop until N’=N:
find n not in N”such that D(n) is a

subset of nodes for which we found the 1\\

minimum step N D). pv)

D), p(w)

D(@).p(2)

— Node w has minimum D(n)
u 2,u

5u

add nto N*

N'={u, %, ¥, v, W w 2u

4.x

for each neighbor m of n not in N': 2,u

3y

4y

for each neighbor of node w
D(m) = min(D(m), D(n) + c(n,m))

3y

4y

sw[n][r]o
2

new cost = old cost or cost through x

L 4y

if D(m) changed, set p(m) = n

March 21, 2016 €S 352 © 2013.2016 Paul Krzyzanovwski

Internet Technology

e
= ’ .
Dijkstra’s Algorithm
D(v): s —
cost of least-cost path from source to v v 3 W
pv): 2 r 5
previous node (neighbor of v) along the
least-cost path to v 3 1
. u z
subset of nodes for which we found the |— 2
least-cost path 1
- y
Loop until N’=N:
find n notin N’ such that D(n) is a
e @ step N D(v).p(v) | DW). p) | DXP() | DY)PY) | D(2).p@)
— Node z is the only one left! 0 |u 20 50 10 - -
addnto N’ 1 |w 2u 4x 2% w
N'={u,x,y.v,w, z} 2 |uwy 2u 3y 4y
for each neighbor m of n not in N': 3 o 3 7
There are no neighbors not in N'! il Y Y
We're done 4 | wyw 4y
5 uxywz
.
Warch 21, 2016 5 352.0 2013.2016 Paul Kizyzanowshi 5
(. N N
Dijkstra’s Algorithm
D(): s
cost of least-cost path from source to v v 3 \W
p(v): 2 5
previous node (neighbor of v) along the
least-cost path to v 3 1
N u z
subset of nodes for which we found the 2
least-cost path 1
X y
We can create a forwarding table
that stores the next hop on the -
|least-cost route step N D(v).p(v) | DW). pW) | DX).P(x) | DY).PY) | D(2).p()
. 0 |u 2u 5u 1u o B
Forwarding | pestination | Link
table for " w 1 |w 2u 4x 2x m
node u ” = 2 |uwy 2u 3y 4y
x ux 9 | 3y 4y
y ™ 4 wyw a4y
z ux 5 uxywz
.
Warch 21, 2016 5 35210 2013.2016 Paul Kizyzanowski 15
r

Oscillations with congestion-based routing

If link cost = load carried on the link

* Link costs are not symmetric
—c¢(u, v) = c(v, u) only if the same
load flows in both directions
* Example loads
— Load of 1 comes into z for w
— Load of 1 comes into x for w
— Load of e comes into y for w 1

* When LSiis run

— y determines (y—z—w) costis 1
compared to (y—x—Ww) cost, which is 1+e

— x determines that x—y—z—w is a lower-cost path

March 21, 2016 €5 352 © 20132016 Paul Krzyzanowski

Paul Krzyzanowski

3/21/2016

(7
.) .
Dijkstra’s Algorithm
D(v): 5 -
cost of least-cost path from source to v v 3 \W
pv): 2 5
previous node (neighbor of v) along the
least-cost path to v 1
. u z
subset of nodes for which we found the 2
least-cost path 1
s x y @) uis x's
N" = ":j N predecessor
Alln re in N’
odes are Sep]| N | DWhp) | D6, P | D0RE | DOIPG) | D@PE)
For each node, we have the total 0 |u 20 Em Tu - -
cost from the source and the
predecessor along that path. 1w 2u 4x 2x =
2 | wy 2u 3y e
We can look up the predecessor to 3 ilew 3y | (2 xisy's
find its predecessor
E.g., least-cost path from u — y 4 uxyw \ [[Ty
isu—-x—y 5 oWz ‘r—‘ (Wyisws
\ |__ predecessor y,
Warcn 21, 2016 5 352 © 2013:2016 Paul Kizyzanowshi 1

s R
Dijkstra’s Algorithm
Computational cost
— 1stiteration: search n nodes to find the minimum cost node
— 2" jteration: search n-1 nodes
— 3 jteration: search n-2 nodes
— nthiteration: search 1 node
— Total of niteratons =n+(n-1)+ (n-2)+... 1 =Y (n — i)
* We need to search n(n+1)/2 nodes
— Complexity = O(n?)
N\ J
(.
Oscillations with congestion-based routing
« After route updates, LS is run again
* X, Y, and z detect 0-cost path counterclockwise
N 7N\
! S :
1 1
e e
J

&

March 21, 2016 €S 352 © 2013.2016 Paul Krzyzanovwski

Internet Technology 3/21/2016

(1) (7
Oscillations with congestion-based routing Avoiding oscillations
« After route updates, LS is run yet again » Ensure that not all routers run the LS algorithm at the
* X, y, and z now detect 0-cost path clockwise samg time . B)
— Avoid synchronized routers by randomizing the time when a router
advertises its link state
/ '&e % \
1 1 :> 1 1
! !
—
- J/ - J
Warch 21, 2016 5 352.0 2013.2016 Paul Kizyzanowshi 19 Warcn 21, 2016 5 352 © 2013:2016 Paul Kizyzanowshi 2
(. . _ 1) (. 7
Distance-Vector Routing Algorithm Bellman-Ford Equation
« Initial assumption « What it says
— Each router (node) knows the cost to reach its directly-connected neighbors — If x is not directly connected to y, it needs to first hop to some neighbor v
— The lowest cost is
. - . the cost of the first hop to v) + (the lowest cost from v to
« lterative, asynchronous, distributed algorithm (: (%, v) + dy(y) prov)+(v
— Multiple iterations _ P s
s du(y),
M the least cost path from x to y, d,(y), is the minimum of the lowest cost of
+ Each iteration caused by local link cost change or distance vector update message all of x’s neighbors
from neighbor
— Asynchronous dy(y) = min{ c(x, v) + dy(y) }
+ Does not require lockstep synchronization e . N
_ Distributed « The value of v that satisfies the equation is the forwarding table entry
+ Each node receives information from one or more directly attached neighbors in x's router for destination y
+ Notifies neighbors only when its distance-vector changes
c(x,v”)
- J/ - J
Warch 21, 2016 5 35210 2013.2016 Paul Kizyzanowski P Warcn 21, 2016 5 352 © 2013.2016 Paul Kizyzanowshi 2
. . . 1) (i 7
Distance-Vector Routing Algorithm Distance-Vector Example
y
« Ateach node x we store: Node x DV table Node y DV table Node z DV table
— c(x, v) = cost for the direct link from x to v for each neighbor v cost to cost to cost to 2 1
— D,(y) = estimate of the cost of the least-cost path from x to y x|y|z x|y|z x|y|z
X z
— Distance Vector is the set of D,(y) for all nodes y in N g[x]01217 glx|=l=]|=~ glx|=]=]|=~
Ely|w]w]w Elyl2]of1 Ely|w]w|w
D,=[Dyy):y €N] [Leastcost estimates from x ol other nodes y | Y T 11T
— Distance vectors received from its neighbors
D,=[Dyy):y€eN] [Set of least-cost estimates from each neighbor v to each node y }
« Each node v periodically sends its distance vector, D, to its neighbors
— When a node receives a distance vector, it saves it and updates its own distance
vector using the Bellman-Ford equation
D,(y) = min{ c(x, v) + D,(y) } foreachnodey e N
— If this results in a change to x's DV, it sends the new DV to its neighbors
Each cost estimate D,(y) converges to the actual least-cost D,(y)
- J/ - J

March 21, 2016 €5 352 © 20132016 Paul Krzyzanowski 2 March 21, 2016 €S 352 © 2013.2016 Paul Krzyzanovwski 2

Paul Krzyzanowski 4

Internet Technology

(1)
Distance-Vector Example
y
Node x DV table Node y DV table Node z DV table
cost to cost to cost to 2 1
x|y|z x|y|z x|y|z
g[o|2|7 glx][o]=]= el x]=]=]= X z
S S S
Elyel== Elyl2]o1 Ely[w]e==
2 || =] ABRED z[7]1]0
Node x sends its DV {0, 2, 7} to nodes y and z
Node x DV table Node y DV table Node z DV table
[cost to cost to cost to
mEmE AnE ATIE
glx|o|2]|7 ‘ glx|o]2]|7 glx|of2|7
g g g
LnoooiE nannlLnnne
[z]=]=]= Z|= == [z]7]1]0
oy, x) =2 c(z,X)=7
- J/
Warch 21, 2016 5 352.0 2013.2016 Paul Kizyzanowshi 2
(. 1)
Distance-Vector Example
y
Node x DV table Node y DV table Node z DV table
cost to cost to cost to 2 1
x|y|z x|y|z x|y|z
elx{o]2]3 elx]o]2]7 elx]o]2]7 x c
S S S
Elyl2]o]1 Elyl2]o]1 Elyl2]o]1
z|7]|1]|0 z|7]|1]|0 23|10
Node x sends its DV {0, 2, 7} to nodes y and z
Node y's vector did not change — it stays quiet
Node z sends its DV {2, 0, 1} to nodes x and y
Node x DV table Node y DV table Node z DV table
[T costto cost to costto
Ty - Az vz
glx|o]2]3 glx|o]2]3 glx|o]2]3
S S S
=lyl2]0]1 =lyl2]0]1 ‘ =lyl2]0]1
[z]3]1]0 BEEAD [z]3]1]o
We converged. Everyone has the same view of the network. Nobody has updates to send.
- J/
Warch 21, 2016 5 35210 2013.2016 Paul Kizyzanowski 2
. 7
Link loss
. Distance to
Distance to c=2
C=: 1 2
@ &‘2 @ We created a
A B Routing Loop
Suppose we lose the linkto C: ¢(B,C) = «
B will send an update to A but A thinks its cost to C is 3
B will think there is a route to C: B—~A—C with a cost of (c(B,A) + 3) = 4
. Distance to
Distance to c=
c=3 1 o
—
A Update (A.0)=3 B ¢
. Distance to @
Distance to C=4
cs5 1 N\ .
A Update (B,C)=4 B c
pdate (B.0)= This continues ad infinitum!
-

March 21, 2016 €5 352 © 20132016 Paul Krzyzanowski 2

Paul Krzyzanowski

3/21/2016

Distance-Vector Example

Node x DV table Node z DV table

cost to cost to cost to 2 1
y|z
2|7
o1
o] 207 [1]0

Node y DV table

x|y|z
x|[0|2|7

y|o]e]=

x|y|z
x|[0]2]|7

from
from

x
NEIE
from

E

z|w|w]|w z

Node y sends its DV {2, 0, 1} to nodes x
Node z sends its DV {7, 1, 0} to nodes x

Node x DV table Node y DV table Node z DV table

Every update to a

‘ cost to cost to cost to

Y y

forwarding table

NIEE

X
x| 0
2

from
from

from

MNES

z
7
1

lo]

Fle]=

z z
2|3 7
01 1
1|0 0

~N< [x
rloln

X
y
z

3d

Fromy: c(y.) is 2
oz, (2y) + ey) =
+2=3

From y: c(y,2)is 1
(x 2) =clx, y) + c(y,2) =

c(xy)=2 czy) =1

Less than old value, 7

Less than old value, 7

and z
andy

March 21, 2016 €S 352 © 2013-2016 Paul Krzyzanowski

Link cost changes

« The DV algorithm remains quiet once it converges

— ... until some link cost changes

« If a node detects link cost change between itself and a neighbor
— It updates its distance vector

— If there is a change in the cost of any least-cost path
it informs its neighbors of the new distance vector

— Each neighbor computes a new least cost
« If the value changed from its previous value, it sends its DV to its neighbors
+ Recompute until values converge

&

March 21, 2016

€5 352 © 20132016 Pauk Krzyzanowski

Mitigation: Poison Reverse

« If Aroutes through B to getto C
— Awill advertise to B that its distance is infinity
— B will then never attempt to route through A

* This does not work with loops involving 3 or more nodes!

* Other approaches
— Limit size of network by setting a hop (cost) limit
— Send full path information in route advertisement
« Perform explicit queries for loops

&

March 21, 2016 €S 352 © 2013.2016 Paul Krzyzanovwski

Internet Technology

The end

Paul Krzyzanowski

3/21/2016

