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1 Introduction

In the previous set of notes, we considered the problem of unconstrained optimization, minimization
of a scalar function f (x) over all x ∈ Rn. In these notes, we consider the problem of constrained
optimization, in which the set of feasible x is restricted. That is, given a function f : Rn 7→ R, solve
the following problem:

minimize f (x)

such that (s.t.) x ∈ X

X ⊂ Rn,

(1)

where X is taken to be a known or given feasible set. In particular, we are interested in identifying
x∗ ∈ X such that f (x∗) realizes the above minimum, if such an x∗ exists. Typical constraints include
bounds on x, such as X = {x ∈ Rn : ||x||6 R} for some R > 0, or linear inequality constraints such
as X = {x ∈ Rn : Ax> b} for a matrix A and a column vector b. More examples will be discussed.

In the usual way, we subsume the problem of maximization of f by instead minimizing − f . As
in the previous notes, unless otherwise indicated we take f to be continuous, and at least twice
differentiable over the domain. We additionally will largely restrict ourselves to constraint sets X
that are closed; this will ensure that if f has a minimum value over X , it is realized by some point
in the constraint set X . (Consider, for instance, trying to maximize the function x over the open
interval X = (0,1).) This will not be a serious limitation in practice.

We may draw a distinction between constrained local minima and constrained global minima:

Definition 1 A constrained local minimum occurs at x∗ ∈ X if there exists an ε > 0 such that

f (x)> f (x∗) for all x ∈ X with ||x− x∗||< ε. (2)

A constrained global minimum occurs at x∗ ∈ X if

f (x)> f (x∗) for all x ∈ X . (3)

We say that a minimum is strict if in the above inequalities we have f (x)> f (x∗) for x 6= x∗.
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As in the case of unconstrained optimization, it may be difficult to determine whether a given local
minimum over X is in fact a global minimum over X . Much will depend, for instance, on the
structure or geometry of X as well as the properties of f (such as convexity). As in the case of
unconstrained optimization, we will largely focus on the following questions:

• When is a minimum of f over X , and corresponding minimizer x∗ ∈ X , guaranteed to exist?

• How can minimizers be accurately and efficiently computed?

• What are the benefits and costs of various algorithmic solutions?

• What kind of theoretical guarantees do the various algorithms offer?

It is instructive to review the established framework and methodology for unconstrained optimiza-
tion, to see how it must be modified in the case of constrained optimization. In the unconstrained
case, minima were identified by considering stationary points where ∇ f (x∗) = 0, which provided
a system of (potentially non-linear) equations that could be solved for x∗. In the constrained case,
however, it can occur that the minimum of f over a restricted set X is not a minimum of f over Rn,
and hence is not a stationary point of f . This requires the derivation of different, though related,
characterizations of minima in the restricted case. Similarly, in the unconstrained case, algorithms
for computing minimizers proceeded by generating a series of iterates {xk} starting from an initial
guess and successively moving in directions of descent of f . In the constrained case, we must be
careful that motion in a given direction does not carry us out of the constraint set X - these direc-
tions are said to be unfeasible. The case of constrained optimization will require new analytic and
algorithmic tools to extend our previous results from the unconstrained case.

Speaking broadly, there are two main ways to approach these problems: the geometric perspective
which views X as a geometric object existing in Rn (for instance, X as a sphere, box, or convex set);
and the analytic perspective which defines X in terms of a set of equalities and inequalities that any
x ∈ X must satisfy. We will examine the problem from both these angles, and derive corresponding
minimization algorithms.

This set of notes may at times reference the previous set of notes on Unconstrained Optimization for
necessary background material - revisit those notes as necessary. In this set of notes, Section 2 gives
a number of motivating examples of constrained optimization problems, and section 3 a number of
examples of possible constraint sets of interest, including a brief discussion of the important case of
linear inequality constraints or X as convex polytopes (a generalization of polyhedra). Section 4 an-
alyzes the problem of existence and characterization of minimizers from the geometric perspective
on X , heavily utilizing convex analysis. This line of thought is continued in section 5, which utilizes
the geometric perspective to derive descent-type algorithms analogous to the descent algorithms for
unconstrained optimization. Section 6 introduces the analytic perspective, defining X in terms of
a system of equalities or inequalities, and presents results on the existence and characterization of
minima in this case, namely the central result of the existence of Lagrange multipliers. This analytic
perspective is continued in section 7, which derives new minimization algorithms based on the ana-
lytic perspective. Lagrange multipliers and the Lagrangian lead to the important concept of duality,
which provides an important theoretical understanding of the structure of optimization problems.
Duality is explored in section 8. This leads to a number of new minimization algorithms, discussed
in section ??.
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2 Some Motivating Discussion

Constrained optimization arises in a variety of contexts. Two frequent examples in practice can be
thought of in the following way: let x be a vector of parameters governing some process, decision,
or business (for instance, inventory to buy or quantities to produce). A classical problem then is to
find x∗ ∈ Rn to realize

maximize PerformanceUnder(x)

s.t. CostUnder(x)6 budget,
(4)

where PerformanceUnder(x) represents the response, potentially profits or rewards, for a given set
of parameters, and CostUnder(x) represents costs (for instance, energy usage or costs of materials)
associated with acting under a given set of parameters, which is limited by some specified budget.
In short, maximize performance subject to cost constraints.

A frequent dual problem to the above is to minimize cost while guaranteeing a sufficient level of
performance, i.e.,

minimize CostUnder(x)

s.t. PerformanceUnder(x)>minPerformance.
(5)

The specific forms of the Performance or Cost functions will depend on the specific problem being
addressed.

An Illustration via Linear Programming: A classic example of this type of problem is linear
programming, in which the objective function f is a linear function of the variables, and variables
are constrained by a set of linear inequalities. A traditional application is as follows: for a given
x ∈ Rn, let xi represent a quantity of product i to be produced, to be sold at (known) cost ci, for
i = 1, . . . ,n. In this case, the return on any production schedule x is given by

c1x1 + c2x2 + . . .+ cnxn = cTx. (6)

However there may be constraints on how much of product i can be produced. Suppose that each
product i is composed of various materials j = 1, . . . ,m. Let a j,i be the proportion of material j
needed to make product i, and let b j be the total amount of material j available. In this case, a given
production schedule x is constrained by

a1,1x1 +a1,2x2 + . . .+a1,nxn > b1

a2,1x1 +a2,2x2 + . . .+a2,nxn > b2

. . .

am,1x1 +am,2x2 + . . .+am,nxn > bm,

(7)

or equivalently, defing the matrix A = [a j,i]m×n and the budget vector b,

Ax> b. (8)
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Taking the constraint as well that under any production schedule x, the amount of product i must be
non-negative, the problem of optimizing the production schedule may be formulated as

maximize cTx

s.t. Ax> b

xi > 0 for i = 1,2, . . . ,n.

(9)

Note, the positivity constraints on the xi may be absorbed into the other linear constraints by appro-
priately expanding the matrix A and budget vector b.

The field of linear programming is broad and well established, with many results and algorithms
on the existence and determination of optima. In particular, it can be shown feasible sets defined
by linear inequalities of the variables define (potentially unbounded) polytopes in the space of Rn,
and that the optima of the objective function (if they exist) must lie on the vertices of this polytope.
This can, to some measure, reduce the problem to systematically checking the value of the objective
function at each of the (finitely many) vertices of the feasible polytope, i.e., the simplex algorithm.

In these notes and in this class, we are interested in the more general problem of non-linear pro-
gramming, when the objective function and the constraint set are either or both defined in terms
of non-linear functions. These problems have a much richer structure than linear programs. How-
ever, it is worth observing that in the world of model-building and optimization, linear models are
frequently a good and useful tool, especially as a starting place for building more complex models.

2.1 Examples of Constrained Problems

In this section, we consider a few interesting examples of non-linear programming problems.

Maximum Likelihood Estimation:
In many contexts, collected data is used to estimate the parameters of some underlying model. This
frequently takes the form of maximum likelihood estimation when the underlying model is prob-
abilistic or random. As an example of this, consider taking a sequence of random, independent
observations, where outcome i is observed with some unknown probability pi, for i = 1, . . . ,n (the
classic example here is a sequence of coin flips). Suppose that N observations are taken, and out-
come i is observed Ni times (so N1 + . . .+Nn = N). In that case, if the true underlying probabilities
are given by the vector p, then the probability of observing the data collected will be

n

∏
i=1

pNi
i . (10)

If the true probabilities are unknown, we may wish to estimate them based on the collected data.
The technique of maximum likelihood estimation is to find the set of parameters p∗ that maximizes
the likelihood of the observed data. Observing the constraints on feasible probabilities - they must
sum to 1 and be non-negative - we have the following non-linear program:

maximize
n

∏
i=1

pNi
i

s.t. p1 + . . .+ pn = 1

pi > 0 for i = 1,2, . . . ,n.

(11)
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An equivalent and potentially simpler formulation is to minimize the − ln of the above objective
function, reducing the product to a sum, albeit one still non-linear as a function of the relevant
variables (though with the caveat that we are taking 0∗ ln0 to be 0):

minimize −
n

∑
i=1

Ni ln(pi)

s.t. p1 + . . .+ pn = 1

pi > 0 for i = 1,2, . . . ,n.

(12)

In either case, it can be shown that the optimal solution is to take p∗i = Ni/N, i.e., the most likely
probability is the observed frequency.

Defining a Representative:
Suppose a set of points have been specified, y

1
, . . . ,y

N
. These points may represent data, such as

classified images or feature vectors. We wish to define a ‘representative’ point x∗ that in some sense
captures or summarizes this cluster of points, or characterizes some measure of similarity with all
of them. There are a number of ways of defining such a point, for instance taking the average
(1/N)(y

1
+ . . .+ y

N
). In this case we wish to identify the x∗ that minimizes the maximum distance

to any of the y
i
. That is, x∗ satisfies

minimizex max{||x− y
1
||, ||x− y

2
||, . . . , ||x− y

N
||}. (13)

As specified above, the problem is an unconstrained minimization problem. However, the objective
function, as the maximum of N other functions, is potentially difficult to handle analytically, as the
derivative may not be continuous. It can be massaged into the form of a constrained minimization
problem though, in the following way, which will lend itself to the methods described in these notes:

minimizex,δ δ

s.t. ||x− y
1
||6 δ

||x− y
2
||6 δ

. . .

||x− y
N
||6 δ .

(14)

Underdetermined Linear Equations and Projection:
Let A be a matrix with m rows and n columns, and b be an m-dimensional vector. We take the rows
of A to be linearly independent. If n = m, then A is invertible, and the system of equations

Ax = b (15)

has a unique solution given by x∗ = A−1b. If, however, n > m, then the system is underdetermined,
and grants no unique solution. In such a case, a secondary criterion may be specified to determine
the optimal solution. For instance, solutions x with smaller norms might be preferred. This leads to
the constrained minimization problem which will in fact have a unique solution

minimize ||x||2

s.t. Ax = b.
(16)
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This is actually a specific instance of a more general problem, that of projection, which will be
discussed in more detail. In particular, given a feasible set X (for instance, as specified by solutions
to Ax = b), we define the projection of a point z to be the point in X nearest to z, i.e., solving

minimize ||x− z||2

s.t. x ∈ X .
(17)

The underdetermined linear equations example above can be seen as an example of this, taking z= 0
and X = {x : Ax = b}.

2.1.1 An Example Problem

As an example, to motivate much of the analysis to follow, consider the following problem:

maximize x1 + x2 + . . .+ xn

s.t. ||x||6 R.
(18)

Note, the constraint above effectively defines feasible x as restricted to a closed sphere of radius R,
centered on the origin, i.e.,

x2
1 + . . .+ x2

n 6 R2. (19)

We may consider the question of what an optimal solution x∗ would ‘look’ like. For instance, for
any optimal x∗, all components must be non-negative. If x∗i < 0 for some i, we could replace x∗i with
−x∗i , which would leave the constraint satisfied, but increase the value of the objective function (by
switching a negative term to a positive one).

Further, it must be that ||x∗|| = R, which is to say that the solution must lie on the boundary of
the sphere. If not, if ||x∗|| < R, one of the components xi may be increased without violating the
constraint, which in turn increases the value of the objective function. This is an instance of a more
general proposition to be discussed later: the maximum of a convex function over a closed convex
set occurs on the boundary.

At this point, there are three ways analysis can proceed:

Reducing the Dimension of the Problem: Let x be some feasible point with ||x|| = R and xi > 0
for each i. Consider the following process for generating a new feasible x′: let i and j be such that
xi 6= x j; for k 6= i and k 6= j, let x′k = xk, but let

x′i = x′j =

√
x2

i + x2
j

2
. (20)

In short, construct x′ by equalizing the i and j-th components, and then normalizing those compo-
nents so that ||x′||= R again. It is straightforward algebra to show from this construction that

n

∑
k=1

x′k >
n

∑
k=1

xk. (21)

Hence, given any feasible x with two components that are not equal, we may construct a new feasible
x′ with a strictly larger value of the objective function. This is essentially a 1-dimensional ascent
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step over the feasible set. It follows then that any x may be improved upon (relative to the value
of the objective function), unless all the components xi are equal. Such a point would be stationary
under this process, and indeed uniquely stationary. Hence we have a unique maximum, given by
x∗ = (R/

√
n,R/
√

n, . . . ,R/
√

n).

Utilizing the Geometry of the Problem: Note that we may restate the original problem in the
following form

maximize uTx

s.t. ||x||6 R,
(22)

where u is the vector of all 1’s. Hence, we are simply trying to maximize the dot product with u
over all vectors x with norm at most R. It is a classical result that a dot product is maximized by a
vector in the same direction as the first, i.e., x∗ = αu for some α > 0. This reduces the problem to

maximizeα>0 α||u||2

s.t. α||u||6 R.
(23)

This reduces the problem to a single dimension, and is maximized taking α = R/||u|| = R/
√

n,
which yields a final solution of x∗ = (R/

√
n,R/
√

n, . . . ,R/
√

n).

The Problem of Feasible Directions: This is easily the most abstract of the three approaches, but
it suggests the motivation for an extremely useful theoretical tool to be discussed later, Lagrange
multipliers. It is convenient to denote the objective function f (x) = x1 + . . .+ xn.

For a given x on the surface of the sphere of radius R centered at the origin, consider the plane
tangent to the sphere at x. This plane can be considered as the set of all vector y such that y− x is
orthogonal to x, i.e., xT(y− x) = 0.

Note that for any x′ ‘below’ the plane, i.e., xT(x′− x)< 0 or x′ on the same side of the plane as the
origin, x′− x is a feasible direction in the sense that for sufficiently small α > 0, x+α(x′− x) is a
feasible point, i.e., ||x+α(x′−x)||6 R. If the directional derivative of f in that direction is positive,
then the objective function can be increased by moving some distance in that direction. This implies
that if ∇ f (x)T(x′−x)> 0 for any x′ below the tangent plane at x, then x cannot give the constrained
maximum of f .

Hence, any potential maximizer x must satisfy ∇ f (x)T(x′− x) 6 0 for any x′ below the tangent
plane, i.e, xT(x′− x)< 0.

However, the set of all x′ such that xT(x′− x) < 0 represents half of Rn, on one side of the plane
passing through the point x, normal to x. The set of all x′ such that ∇ f (x)T(x′− x) 6 0 represents
half of Rn, on one side of the plane passing through the point x, normal to ∇ f (x). If any point x′ in
the half-space defined by the former plane must lie in the half-space defined by the latter, the two
half-spaces must coincide, i.e., the dividing planes must be equivalent. This implies that the normal
vectors that define the planes must be parallel.

Hence we see that for any maximizer x∗, we must have that the vectors x∗ and ∇ f (x∗) must be
parallel, i.e.,

∇ f (x∗) = λx∗, (24)

for some scalar value λ .
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Notice, the above analysis holds for all functions f in this case - it can be used therefore to derive
optimality conditions for any function defined over a sphere centered at the origin. In this specific
case, we have that for all x, ∇ f (x) = u where u is the vector of all 1’s. Hence we have that x∗ =
(1/λ ,1/λ , . . . ,1/λ ) for some scalar value λ 6= 0 (because ∇ f (x) is a non-zero vector everywhere,
it is impossible for λ = 0). Taking the additional constraint that ||x∗|| = R, we may solve for λ to
yield a final solution of

x∗ = (R/
√

n,R/
√

n, . . . ,R/
√

n). (25)

As will be discussed later, this is essentially the motivation behind Lagrange multipliers.

2.2 Example Problems

1 For the x′ as constructed in Eq. (20), verify that ||x′||= R and verify Eq. (21) to show that x′

is not only feasible, but increases the value of the objective function.

2 Viewing the construction in the ‘Reducing the Dimension of the Problem’ subsection above
as an iterative algorithm for converging to the solution, what is the rate of convergence?
How should each i, j for modification be chosen? Hint: For a feasible x and corresponding
constructed x′, examine f (x′)− f (x) and ||x′− x||.

3 Constraint Sets

There are a number of constraint sets X ⊂Rn that frequently occur in practice, and it is worth trying
to develop some intuition for them.

• Polytopes via Linear Inequalities: In many contexts, the feasible set X may be defined as
the set of x ∈ Rn that satisfy a finite number of linear inequalities. For j = 1, . . . ,m, we may
be interested in x that satisfy the linear inequality

a j,1x1 +a j,2x2 + . . .+a j,nxn > b j, (26)

for known {a j,i},b j, or defining the matrix A = [a j,i]m×n and vector b∈Rm, we may write the
full system of inequalities as

Ax> b. (27)

Observe that this is actually a fairly general model, subsuming other special cases: in the
case that we want a j,1x1 + . . .+ a j,nxn 6 b j, we may consider alternately (−a j,1)x1 + . . .+
(−a j,n)xn > −b j. In the case that we want a j,1x1 + . . .+ a j,nxn = b j, we may introduce two
separate inequalities, a j,1x1 + . . .+ a j,nxn > b j and (−a j,1)x1 + . . .+(−a j,n)xn > −b j, and
augment the matrix A accordingly.

Taking the constraint set to be

X = {x ∈ Rn : Ax> b}, (28)
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if X is non-empty it actually has an important geometric interpretation, as a convex polytope
in the space Rn (generalizing the concept of a polyhedron in R3). Any single linear inequality
defines a ‘half-space’, half of Rn. The planar faces of X correspond to surfaces where a
single inequality constraint is satisfied with equality, a j,1x1+ . . .+a j,nxn = b j. The edges and
vertices of X are the regions where multiple inequality constraints are satisfied with equality
simultaneously.

The fundamental result of linear programming is that when the objective function f is linear,
and the feasible set is defined by a set of linear inequalities as above, if there is an optimum
(i.e., infx∈X f (x)>− inf), then the optimum is achieved at a vertex of the polytope. Because
there are only finitely many vertices of such a polytope, the optimum can therefore be found
by systematically checking the value of the function at the vertices - this is essentially the
basis of the classical simplex algorithm.

• Linear Spaces and Manifolds: As a related constraint set, we frequently encounter sets of
the form

X = {x ∈ Rn : Ax = b}, (29)

for an m× n matrix A and m-dimensional vector b. As noted above, this is technically sub-
sumed in the inequality case (taking Ax > b and −Ax > −b simultaneously), but it is worth
considering in its own right. We assume that A and b are such that X is not empty.

In particular, note that if b = 0, X as above defines a linear space, for instance in R3 for
various A 6= 0 the set X will give lines or planes passing through the origin.

Let X0 = {x ∈ Rn : Ax = 0}. For generate X , note that if x,y ∈ X , we have that x− y ∈ X0. As
such, if we specify a solution x′ satisfying Ax′ = b, any point in X may be represented as x′,
plus some point in X0. That is,

X = {x′+ v : v ∈ X0}. (30)

We see that X represents a linear manifold, a linear space translated to pass through the point
x′.

• Spheres and Quadratic Surfaces: A basic geometric constraint set of interest is the sphere,
i.e., for some x0 and R > 0,

X = {x ∈ Rn : ||x− x0||6 R}, (31)

to define a sphere centered at x0 of radius R. We might also restrict to those vectors that are
at distance exactly R from x0, i.e.,

X = {x ∈ Rn : ||x− x0||= R}. (32)

This can be considered as a specific instance of a more general class of constraint sets, defined
by quadratic surfaces.

Linear functions are frequently useful for objective functions or constraints if there is some
notion of independence between the different components, e.g., one component can be modi-
fied without influencing or affecting the others. In terms of modeling, this is frequently a good
starting assumption. However, when introducing elements such as covariance or dependence,
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the next model worth considering would be to include pairwise interactions, modeled by in-
cluding terms such as xix j. This leads generally to considering quadratic forms xTQx+ cTx
for a given matrix Q and vector c, i.e.,

XP = {x ∈ Rn : xTQx+ cTx6 q} (33)

• Simplices and Convex Hulls: Consider defining the constraint set XP to be the set of feasible
probability vectors, i.e.,

XP = {p ∈ Rn :
n

∑
i=1

pi = 1 and ∀i, pi > 0}. (34)

This is a special case of what is known as a convex hull. In the general case, consider a set
of n points {v1, . . . ,vn}, and define the set X to be the set of all convex combinations of these
points:

X = {δ1v1 +δ2v2 + . . .+δnvn :
n

∑
i=1

δi = 1 and ∀i,δi > 0}. (35)

In this case, it can be shown that X is the smallest convex set that contains the points {vi}; this
is the definition of a convex hull. Note, it can be shown that for an X defined by a system of
linear inequalities as in the first case above, if X is bounded (i.e., can be contained in a sphere
of finite radius), then X is the convex hull of its vertices.

In the case of XP as above, it can be shown that XP is the convex hull of the n-many points
{(1,0, . . . ,0),(0,1, . . . ,0), . . . ,(0,0, . . . ,1)}. The convex combinations of these points have
natural interpretations as vectors of probabilities.

• Orthants and Boxes: The following is another special case of some of the examples consid-
ered above, but worth mentioning in its own right. In many cases, there are simple feasibility
constraints on x, for example taking xi > 0 for all i. This defines the ‘positive orthant’ of Rn

(generalizing the idea of a quadrant in R2),

X = {x ∈ Rn : ∀i,xi > 0}. (36)

Other orthants of Rn may be defined similarly. As a related concept, a useful constraint
set is frequently to bound the individual components of x, i.e., for a given set of constants
(a1,b1), . . . ,(an,bn),

X = {x ∈ Rn : ∀i,ai 6 xi 6 bi}. (37)

This is, essentially, a high dimensional box.

• General Equality and Inequality Constraints: In many situations, including some of the
above, the constraint set may be defined in terms of a system of equalities or inequalities that
any feasible x ∈ Rn must satisfy. In the most general case, we may take h1, . . . ,hm as a set of
functions hi : Rn 7→ R and g1, . . . ,gr as a set of functions g j : Rn 7→ R and define

X = {x ∈ Rn : ∀i,hi(x) = 0 and ∀ j,g j(x)6 0}. (38)
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It is important to observe that to some extent we may translate freely between equality con-
straints and inequality constraints. A given equality constraint hi(x) = 0 may be replaced
by the two inequality constraints hi(x) 6 0 and −hi(x) 6 0. A given inequality constraints
g j(x) 6 0 may be replaced by an equality constraint by adding a variable xn+1 (increasing
the space from Rn to Rn+1) and taking the equality constraint g j(x)+ x2

n+1 = 0. The precise
form of the constraints used may have some bearing on what computational methods will be
effective; it is useful to be able to translate between them.

3.1 Example Problems

1 Prove that a polytope defined by a finite system of linear inequalities (X = {x ∈ Rn : Ax> b}
as in the previous section) has finitely many vertices. Hint: What do the vertices represent,
relative to the system of inequalities?

2 If g : Rn 7→R is a convex function, show that the set Xg = {x ∈Rn : g(x)6 0} is a convex set.

3 Let X and Y be convex sets. Show that Z = X ∩Y is also convex. What implication does this
have for constructing constraint sets?

4 Show that the constraint sets discussed in this section (specifically, Eqs. (28), (29), (31), (34),
(35), (36), (37)) are convex sets.

4 A Geometric Perspective: Convex Analysis

In this section, we focus on the view of the constraint set X as a geometric object embedded in Rn.
As an initial result, we have the following theorem on the existence of optimal minimizers:

Theorem 1 (The Extreme Value Theorem) A continuous function f :Rn 7→R over a closed, bounded
set X ⊂ Rn attains its minimum, i.e., there is an x∗ ∈ X such that f (x∗) = minx∈X f (x).

The proof of this is somewhat technical, and discussion of it is given in Appendix A.

The importance of this result can be illustrated by example. For instance, considering the func-
tion f (x) = x2 over the interval X = [−2,3], since the interval is closed and bounded, the theorem
guarantees that a minimizer exists, and indeed we have x∗ = 0. Consider however the function
f (x) = 1/(1+ x) over the interval X = [0,∞). In this case, while the function f has a lower bound,
i.e, f (x) > 0 for all x ∈ X , there is no x∗ ∈ X for which f (x∗) = 0 - no minimizer exists, and the
conditions of the theorem are not met because the interval [0,∞) is not bounded. Consider as well
the function f (x) = x2 over the interval X = (3,4). In this case again we have a lower bound, namely
that f (x)> 9 for all x ∈ X , but there is no minimizer x∗ ∈ X such that f (x∗) = 9 - the conditions of
the theorem are not met, because the interval (3,4) is not closed.

This theorem guarantees the existence of a minimizer in most cases of interest, a result unavailable
in the previous, unconstrained case, as continuous functions over Rn may or may not attain their
minimizers. This result is therefore reassuring, but somewhat uninformative as to the nature of these
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minimizers. By assuming additional structure on f and X , we may derive more information about
the optima.

In particular, we begin by taking X ⊂ Rn to be a closed, convex set. The following theorem gives a
necessary condition any constrained minimum of f must satisfy:

Theorem 2 (Necessary Conditions) If x∗ ∈ X is a local minimum of f over X, and X is a closed,
convex set, then for all x′ ∈ X,

∇ f (x∗)T(x′− x)> 0. (39)

Proof. It is convenient to introduce the concept of a feasible direction:

Definition 2 For a point x ∈ X, a feasible direction d is one in which x+αd ∈ X for all sufficiently
small values of α > 0, i.e., a line may be extended from x in the direction d, and remains in the set
X for at least some interval.

If x ∈ X is a local minimum of f , it must be that the directional derivative in any feasible direction
from x must be non-negative, i.e., if d is a feasible direction from x,

∇ f (x)Td > 0. (40)

Observe then that for x ∈ X , for any x′ ∈ X , d = x′− x is a feasible direction from x. To see this,
note that from the convexity of X we have that x+αd = (1−α)x+αx′ ∈ X for any 06 α 6 1. The
result follows immediately. �

This result can be viewed as a restricted version of the parallel result for unconstrained optimization,
that at a minimum x∗ over Rn, ∇ f (x∗) = 0. Note, if x∗ ∈ X and any direction is a feasible direction,
i.e., x∗ is in the interior of X , it follows from the above theorem that ∇ f (x∗) = 0 (consider the result
for a feasible direction d and feasible direction −d). Hence, the restricted result as stated in the
above theorem is really only meaningful for local minima that lie on the boundary of X .

An Application: The above necessary condition can be used to derive properties of a given mini-
mizer. For instance, consider the minimizing f over the positive orthant

X = {x ∈ Rn : xi > 0 for i = 1,2, . . . ,n}. (41)

If x∗ ∈ X is a minimizer, consider the hypothetical point x′ such that x′ = (x∗1,x
∗
2, . . . ,x

∗
i +1, . . . ,x∗n)

for a given i, that is x′ agrees with x∗ everywhere but in the i-th coordinate. Clearly, x′ ∈ X . In that
case, applying the necessary condition above

∇ f (x∗)T(x′− x∗) =
∂ f
∂xi

(x∗)> 0. (42)

As the above must hold for all i, we have that the partial derivative with respect to each coordinate
at the minimum must be non-negative.
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Further, suppose for a given i we have that x∗i > 0. Consider the hypothetical point x′=(x∗1, . . . ,x
∗
i /2, . . . ,x∗n),

that is x′ agrees with x∗ everywhere but the i-th coordinate, which is halved. In this case, applying
the necessary condition, we have

∇ f (x∗)T(x′− x∗) =−1
2

x∗i
∂ f
∂xi

(x∗)> 0, (43)

or, since x∗i > 0, we have that ∂ f/∂xi(x)6 0.

Combining the two results, we have that at any minimizer x∗, ∂ f/∂xi(x∗) = 0 for any i such that
x∗i > 0, and ∂ f/∂xi(x∗)> 0 for all i.

If, as in the unconstrained case, place more structural restrictions on f , namely that f be a convex
function over X , we may strengthen these results further:

Theorem 3 If f is convex over X, then any local minimum over X is also a global minimum over
X. Additionally, if f is strictly convex, then there is a unique global minimizer over X.

Proof. The proof of this theorem goes exactly as in the unconstrained case, as presented in the
Unconstrained Optimization Notes. �

4.1 Projections

A useful tool in the study of minimization from a geometric perspective is that of projection.

Definition 3 Given a closed, convex set X ⊂ Rn and a point z ∈ Rn, the projection of z into X is
defined to be the point in X that minimizes the distance to z. That is, the optimal solution to

minimize ||x− z||2

s.t. x ∈ X .
(44)

The projection of z into X will be denoted [z]+.

The projection has a number of important properties, summarized below.

Theorem 4 Taking X as a closed, convex subset of Rn, any z ∈ Rn, the following are true:

i) The solution of the problem in Eq. (76) exists and is unique, i.e., the projection [z]+ is well
defined.

ii) The projection [z]+ uniquely satisfies

(z− [z]+)T(x− [z]+)6 0 for all x ∈ X . (45)

iii) For any z,w ∈ Rn,
||[z]+− [w]+||6 ||z−w||. (46)

13



iv) If X is a subspace of Rn, then [z]+ uniquely satisfies

xT(z− [z]+) = 0 for all x ∈ X , (47)

i.e., z− [z]+ is orthogonal to X.

Proof. The proof of (i), (ii), and (iv) are given as example problems below. The proof of each
rely on the previous results on the minimizers of f over convex sets, in this case taking f (x) =
||x− z||2 = (x− z)T(x− z). To prove (iii), we may utilize (ii) in the following way. Fixing z,w ∈Rn,
we have that

(z− [z]+)T([w]+− [z]+)6 0, (48)

since [w]+ ∈ X , and that
(w− [w]+)T([z]+− [w]+)6 0, (49)

since [z]+ ∈ X .

Adding these inequalities yields

(z− [z]+−w+[w]+)T([w]+− [z]+)6 0, (50)

or
(z−w)T([w]+− [z]+)− ([z]+− [w]+)T([w]+− [z]+)6 0, (51)

which may be simplified to yield

||[z]+− [w]+||2 6 (z−w)T([z]+− [w]+). (52)

However, we have the result that for any vectors u,v ∈ Rn, uT v 6 ||u||||v||, which applied to the
above yields

||[z]+− [w]+||2 6 ||z−w||||[z]+− [w]+||. (53)

The result follows immediately from this. �

Computing projections is of course a constrained minimization problem in itself. However, geomet-
ric intuition often renders it fairly straightforward in practice, especially for structurally simple X ,
such as spheres or boxes. For instance, taking X as the positive orthant, X = {x ∈ Rn : ∀i,xi > 0},
the projection of any z ∈ R is given by

[z]+ = (z+1 ,z
+
2 , . . . ,z

+
n ), (54)

where z+i represents the ‘positive part’ of zi, i.e., gives zi if zi > 0, and 0 if zi < 0.

Geometry frequently renders projection a useful and effective tool in practice.

4.2 Example Problems

1 Under the heading of unconstrained optimization, we have a theorem that says that if f is a
strictly convex function, that any minimum is in fact the unique global minimum. Show that
f (x) = ex is a strictly convex function, but that it has no minimizer over X = R. How does
this agree or disagree with the theorems presented in this section?
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2 Consider applying the Necessary Condition theorem to minimizing a function f over a the
simplex

X = {x ∈ Rn :
n

∑
i=1

xi = 1 and xi > 0 for i = 1,2, . . . ,n}. (55)

What may be concluded? What are useful alternative points x′ ∈ X to consider?

3 Prove items (i), (ii) and (iv) of Theorem 4. Hint: For (i), to prove uniqueness, proceed
by either by proving the strict convexity of the objective function in Eq. (76) or proceed
by contradiction, assuming two distinct elements x1,x2 ∈ X that minimize the distance to z.
Consider feasible directions at these points. For (ii), consider the necessary conditions for a
minimizer to Eq. (76). For (iv), use item (ii) and the assumption that X is a subspace.

4 Derive and prove a simple formula for the projection of a point z onto the sphere of radius R
centered at x0,

X = {x ∈ Rn : ||x− x0||6 R}. (56)

5 Suppose that X = {x ∈ Rn : g(x) 6 0} for a convex function g. Prove that for any z /∈ X , the
vector z− [z]+ is orthogonal to the plane tangent to X at [z]+.

6 Prove Eq. (54).

5 Descent Algorithm Analogs

In the case of unconstrained optimization, we considered descent algorithms that constructed se-
quences of points that converged to a minimum of f . These sequences were of the following form,
iterating

xk+1 = xk +αkdk (57)

where dk was a direction of descent chosen so that ∇ f (xk)
Tdk < 0 and αk > 0 was a propitiously

chosen stepsize such that f (xk +αkdk)< f (xk).

Applying similar algorithms in the constrained optimization case runs into the following difficulty,
that the iterates must be constrained to lie in the feasible set X . Hence, directions and stepsizes must
be chosen in such a way that the iterates remain feasible. In general, it suffices to ensure that dk
is a feasible direction at xk, as discussed previously. Under the assumption that X is convex, any
feasible direction d at x may be expressed as d = x′− x for some x′ ∈ X . This allows the following
generalization of the descent algorithm in the constrained case when applied to convex X : for a
given xk, identify an x′k ∈ X such that x′k− xk is a descent direction. As the line between these two
points is contained entirely within X , search along this line for a step that achieves descent. This
yields a descent step

xk+1 = xk +αk(x′k− xk), (58)

where αk ∈ (0,1] is chosen to guarantee descent. It is possible that αk > 1 might achieve improved
descent, but because of convexity we know that all stepsizes from 0 to 1 will yield a feasible xk+1 ∈
X .
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The problem of constructing a descent algorithm therefore becomes one of systematically gener-
ating appropriate x′k and stepsizes αk. For a given x′k, the stepsize αk may be chosen a number of
ways, but in particular it is worth mentioning:

• Armijo’s Rule: This is exactly as stated in the unconstrained case; starting with an initial
stepsize guess, the guess is reduced by some factor 0 < β < 1 successively until a descent-
achieving stepsize is found. In this case, we may take s = 1 as the initial guess at the stepsize.

• Limited Minimization Rule: Consider defining the function g(s) = f (xk + s(x′k− xk)). We
may use any of the minimization rules discussed previously (for instance, quadratic interpo-
lation) to identify the optimal s∗ such that g(s∗) = min06s61 g(s), and then take αk = s∗.

• Constant Stepsize: Taking a constant stepsize of αk = α can frequently lead to convergence,
however if α is chosen to be too small, convergence may be particularly slow, and if α is
chosen to be too large, convergence cannot be guaranteed. This parallels the case in uncon-
strained optimization.

Note that as long as αk ∈ (0,1], we are guaranteed that xk+1 will be feasible; the only concern is
achieving descent over this range. We delay the discussion of systematically generating appropriate
x′k momentarily.

With regards to convergence, we may demonstrate similar guarantees as in the unconstrained case:
namely if the sequence of feasible directions dk = x′k− xk is gradient related, and the stepsizes
are chosen by either of the above rules, any limit point of the resulting sequence {xk} will satisfy
the necessary conditions for a minimum as in Theorem 2. For a discussion of gradient related
sequences, see the relevant section in the Unconstrained Optimization Notes.

We consider primarily two methods for generating useful x′k, the conditional gradient method, and
the gradient projection method.

5.1 The Conditional Gradient Method

In this case, for a given xk, we consider x′k to be the point in X that essentially maximizes both
the rate of descent from xk, and the length of the interval over which to search (thus increasing the
likelihood of finding a good descent step). In particular, we take x′k as the solution to the following
minimization problem

minimize ∇ f (xk)
T(x′− xk)

s.t. x′ ∈ X .
(59)

This represents a secondary optimization sub-problem that will need to be solved in every step of
the algorithm. Fortunately, the above problem has some advantages which may make it relatively
simple: for instance, note that the objective function is in fact linear in terms of the variables being
optimized over, taking xk as fixed. In this case, it may be simple to solve over various X ; in the case
of X defined by linear inequalities, this is simply a Linear Programming problem, for which many
efficient solution algorithms exist. We observe that in many cases, the optimal solution will be an
x′ in a direction from xk opposite the gradient ∇ f (xk), as far away from xk as allowed by X . This
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attempts to minimize the dot product of the gradient ∇ f (xk) with the difference x′− xk, but other
superior solutions may be allowed by the geometry of X .

In general the convergence of this method can be quite poor, the errors converging to 0 at a sub-
linear or sub-geometric rate, but is improved (to linear) when the constraint set X has ‘sufficient
curvature’.

Termination Condition: If f is convex, the following can be shown:

f (xk)>min
x∈X

f (x)> f (xk)+∇ f (xk)
T(x′k− xk), (60)

and that ∇ f (xk)
T(x′k− xk)→ 0 as k→ ∞. Hence, |∇ f (xk)

T(x′k− xk)|< ε may be used as a termina-
tion condition for this algorithm in this case.

5.2 The Gradient Projection Method

In this case, for some secondary stepsize sk, we define

x′k = [xk− sk∇ f (xk)]
+, (61)

and then take xk+1 = xk +αk(x′k− xk).

This is frequently implemented taking αk = 1, in which case we have the iteration:

xk+1 = [xk− sk∇ f (xk)]
+. (62)

This has a very nice, natural interpretation: we take a step of steepest descent with a given stepsize
sk, and then project back into the set X . In the case that the steepest descent step remains in X , the
projection does nothing and we have simply taken a step of steepest descent. One of the surprising
things about this algorithm is that xk+1− xk is a descent direction, for all stepsizes sk, unless xk
satisfies the necessary conditions for minima in Theorem 2.

Theorem 5 For xk+1 as defined above,

∇ f (xk)
T(xk+1− xk)< 0, (63)

unless xk = [xk− sk∇ f (xk)]
+, in which case xk satisfies the necessary conditions for a minimum as

in Theorem 2.

Proof. We begin by assuming xk 6= [xk− sk∇ f (xk)]
+, i.e., xk+1 6= xk. We will deal with this case

separately.

We have the following:

∇ f (xk)
T(xk+1− xk) = ∇ f (xk)

T([xk− sk∇ f (xk)]
+− xk)

=
1
sk

(
−sk∇ f (xk)

T(xk− [xk− sk∇ f (xk)]
+)
)

=
1
sk

(
((xk− sk∇ f (xk))− xk)

T(xk− [xk− sk∇ f (xk)]
+)
) (64)
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Let zk = xk− sk∇ f (xk). In which case

∇ f (xk)
T(xk+1− xk) =

1
sk
(zk− xk)

T(xk− [zk]
+)

=
1
sk
((zk− [zk]

+)− (xk− [zk]
+))T(xk− [zk]

+)

=
1
sk
(zk− [zk]

+)T(xk− [zk]
+)− 1

sk
||xk− [zk]

+||2

(65)

Note, in the above we have that (zk − [zk]
+)T(xk − [zk]

+) 6 0 by the properties of the projection
(since xk ∈ X), and that ||xk− [zk]

+||2 > 0 by the initial assumption that xk 6= xk+1. Hence in this
case, we have

∇ f (xk)
T(xk+1− xk)< 0. (66)

Now consider the case that xk = [xk−sk∇ f (xk)]
+. We wish to verify the condition given in Theorem

2, i.e, xk satisfies the necessary conditions for a minimum. Let x ∈ X .

∇ f (xk)
T(x− xk) = ∇ f (xk)

T(x− [xk− sk∇ f (xk)]
+)

=− 1
sk

(
−sk∇ f (xk)

T(x− [xk− sk∇ f (xk)]
+)
)

=− 1
sk

(
((xk− sk∇ f (xk))− xk)

T (x− [xk− sk∇ f (xk)]
+)
)

=− 1
sk

((
zk− xk

)T
(x− [zk]

+)
)

=− 1
sk

((
zk− [zk]

+
)T

(x− [zk]
+)
)
.

(67)

it follows from the above and the properties of the projection that ∇ f (xk)
T(x− xk), and that this

holds for all x ∈ X . �

To close, we consider the problem of the rate of convergence of the gradient projection method. The
following is an important property of any minimizer x∗ ∈ X :

Proposition 1 If x∗ is a local minimum f over X, then for all s > 0,

x∗ = [x∗− s∇ f (x∗)]+. (68)

The proof is left as an exercise. We utilize this result in the following way.

We demonstrate that in general, we expect the gradient projection method to have linear or geometric
convergence in error. Consider the case of f (x) = (1/2)xTQx− bTx over a closed convex set X ,
with Q as a positive definite matrix with maximal and minimal eigenvalues given by λmax,λmin
respectively. Recall that in general, we expect any arbitrary function to behave like a quadratic
form (defined by the Hessian) near a minimum, so this is a useful test case. Consider the gradient
projection method with a constant stepsize s, converging to a minimum x∗ ∈ X . Then, utilizing the

18



property of projection that it is non-expansive (see the relevant projection theorem),

||xk+1− x∗||= ||[xk− s∇ f (xk)]
+− [x∗− s∇ f (x∗)]+||

6 ||(xk− s∇ f (xk))− (x∗− s∇ f (x∗))||
= ||xk− s∇ f (xk))− x∗+ s∇ f (x∗)||
= ||xk− x∗− s(Qxk−Qx∗)||
= ||(I− sQ)(xk− x∗)||
6max(|1− sλmax|, |1− sλmin|)||xk− x∗||.

(69)

The last step utilizes the fact that if λ is an eigenvalue of Q, 1− sλ is an eigenvalue of I− sQ, and
an eigenvalue bound discussed in the Unconstrained Optimization Notes.

Hence from the above, we see that if s is sufficiently small, the error on xk+1 is at most some constant
factor less than 1 of the error on xk. This guarantees a worst case linear or geometric convergence
of error, if s is sufficiently small.

5.2.1 Alternative Stepsize Choices

The above convergence analysis was predicated on taking a constant stepsize sk = s. Naturally this
is not the only choice. However, consider attempting to find the absolute optimal stepsize, i.e.,
trying to find

sk = arg mins>0 f ([xk− s∇ f (xk)]
+). (70)

While the function f ([xk − s∇ f (xk)]
+) can be shown to be continuous, it will likely lack differ-

entiability at all points, or possess other analytic quirks that make successive approximation (and
therefore estimation of an optimal s∗ difficult. As a systematic alternative, we might consider adapt-
ing Armijo’s Rule, giving Armijo’s Rule Along the Projection Arc:

For an initial stepsize guess s′ > 0, contraction factor β ∈ (0,1) and cutoff σ ∈ (0,1), consider
finding the smallest integer t > 0 such that

f (xk)− f ([xk− s′β t∇ f (xk)]
+)

∇ f (xk)
T(xk− [xk− s′β t∇ f (xk)]

+)
> σ , (71)

and then take sk = s′β t .

As with the classical Armijo’s Rule, this essentially starts with an initial guess at a good stepsize, and
reduces it by a constant factor until sufficient descent is achieved. The only computational burden
(aside from the successive evaluations of f ) is in computing the projection [xk− s′β t∇ f (xk)]

+.

5.3 Additional Methods

One additional method worth considering is the constrained analog of Newton’s method. In this
case, we have

xk+1 = xk +αk(x′k− xk), (72)
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and

x′k = arg minx∈X

[
f (xk)+∇ f (xk)

T(x− xk)+
1

2sk
(x− xk)

T
∇

2 f (xk)(x− xk)

]
. (73)

In particular, taking αk = 1,sk = 1, we have

xk+1 = arg minx∈X

[
f (xk)+∇ f (xk)

T(x− xk)+
1
2
(x− xk)

T
∇

2 f (xk)(x− xk)

]
, (74)

which is to say, we take xk+1 to be the point in X that minimizes the second order Taylor approx-
imation of f , centered at xk. This is the natural ‘constrained’ extension of the classical Newton’s
method. As such, if it is started with some x0 sufficiently close to a minimum, convergence should
be (and is generally) quick and effective - indeed, under some assumptions on f , convergence can
again be shown to be superlinear. If it is unclear where a good general starting point may be, con-
sidering the more general framework with flexible stepsizes αk,sk (potentially chosen by Armijo’s
Rules, as appropriate) may be more effective.

However, computationally speaking, computing the solution to the above constrained minimization
problem (while quadratic forms as above are generally as simple as one might hope for) can prove
difficult, particularly for complex X but even for some simple X .

5.4 Example Problems

1 Revisit the proof of convergence for descent algorithms in the unconstrained case. Generalize
it to the constrained case as above.

2 Let X be the unit sphere centered at the origin. For a given x ∈ X , find the largest s> 0 such
that x− s∇ f (x) ∈ X .

3 Prove Eq. (60).

4 Implement the gradient projection method for a suitable test f over the unit sphere, for various
choices of stepsize or stepsize rule for sk. What is a good initial guess? How does it perform?
What effect does the choice of stepsize or stepsize rule have?

5 What are good termination conditions for the gradient projection method?

6 Prove Proposition 1.

7 As an example of the potential difficulties implementing a constrained Newton’s method, con-
sider the problem of minimizing the quadratic form (1/2)(x−x0)

T Q(x−x0) for a symmetric,
positive definite matrix Q and some point x0, where the constraint set X is defined to be the
unit ball centered at the origin. Assume that x0 /∈ X .

6 An Analytic Perspective: Lagrange Multipliers

In this section, we view the feasible set X ⊂Rn from an analytic perspective, as defined by a system
of equalities and inequalities. In particular, we take a set of functions hi : Rn 7→ R for i = 1, . . . ,m
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and g j : Rn 7→ R for j = 1, . . . ,r, and consider sets of the form

X = {x ∈ Rn : ∀i,hi(x) = 0 and ∀ j,g j(x)6 0}. (75)

As noted previously, it is possible to exchange between equality and inequality constraints: hi(x)= 0
becomes hi(x)6 0 and−hi(x)6 0; g j(x)6 0 becomes, through the addition of new dummy or slack
variables, g j(x)+ (x′j)

2 = 0. Some computational approaches will be more applicable to one form
or another, so it is good to have a sense of how to translate between them.

It is convenient to define the vector functions h(x) = (h1(x), . . . ,hm(x)) and g(x) defined similarly.
Hence the constraints may be rewritten as h(x) = 0 and g(x)6 0.

In the unconstrained case, we derived the condition that at any minimum x∗ ∈ Rn, we must have
∇ f (x∗) = 0 (and related conditions on the Hessian). This was our primary analytic tool for studying
minima - many of the algorithms discussed can be thought of in terms of attempting to solve the
system of equations defined by ∇ f (x) = 0. In this section, we derive a similar condition for minima
that similarly gives a system of equations that can be solved, analytically or algorithmically, to yield
minima.

6.1 Equality Constraints

In this section, we consider the case of equality constraints alone, that is:

minimize f (x)

s.t. h(x) = 0.
(76)

We consider inequality constraints in the next subsection.

The main result here is the classical Lagrange multipliers theorem. First, we define the following
concept:

Definition 4 A point x ∈ Rn is regular if the vectors {∇h1(x),∇h2(x), . . . ,∇hm(x)} are linearly
independent.

We have the following theorem:

Theorem 6 (Lagrange Multiplier Necessary Conditions for Minima) Let x∗ be a local minimum
of f subject to h(x∗) = 0, and let x∗ be regular. Then there exists a unique vector of constants
λ
∗ = (λ ∗1 , . . . ,λ

∗
m) ∈ Rm such that

∇ f (x∗)+
m

∑
i=1

λ
∗
i ∇hi(x∗) = 0. (77)

Additionally, if f and h are twice continuously differentiable,

dT

(
∇

2 f (x∗)+
m

∑
i=1

λ
∗
i ∇

2hi(x∗)

)
d > 0, (78)

for all vectors d ∈ Rn such that dT
∇hi(x∗) = 0 for all i = 1, . . .m.
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In short, this result provides a system of equations of the form{
∂ f
∂xk

(x∗)+
m

∑
i=1

λ
∗
i

∂hi

∂xk
(x∗) = 0 : k = 1,2, . . . ,n

}
(79)

and
{hi(x∗) = 0 : i = 1, . . . ,m} (80)

that may be solved simultaneously (n+m equations in n unknown x-coordinates and m unknown
λ -coordinates) to yield potential minima of the function, the same way ∇ f (x) = 0 was solved in
the unconstrained case. The second order condition on the Hessians provides a mechanism for
distinguishing maxima from minima, as the ∇2 f (x∗) as positive semi-definite condition did, in the
unconstrained case.

There is a lot to unpack about this theorem, but it is useful to see some examples of its use before
attempting to explain or prove it.

6.1.1 Examples for Lagrange Multipliers with Equality Constraints

Note: in each of the following examples, the ‘regularity’ condition of the minimizer in the Lagrange
multipliers theorem is immediately satisfied, since there is only one equality constraint in each case.

• Consider the following problem, for R > 0:

minimize x1 + x2 + . . .+ xn

s.t.
n

∑
i=1

x2
i = R2.

(81)

This may be expressed taking f (x)= x1+. . .+xn and h(x)= xTx−R2. Applying the Lagrange
multiplier theorem, we have that any minimum x has some scalar value λ such that h(x) = 0
and

{1+2λxi = 0 : i = 1, . . .n} . (82)

From the Lagrange multiplier equations above, we have that λ 6= 0, and that for each i,
xi =−1/(2λ ). The constraint h(x) = 0 therefore gives us n(−1/(2λ ))2 = R2 or −1/(2λ ) =
±R/
√

n. This yields two feasible solutions for x:

x1 = (R/
√

n, . . . ,R/
√

n) : f (x1) = R
√

n

x2 = (−R/
√

n, . . . ,−R/
√

n) : f (x2) =−R
√

n.
(83)

As the above represent the only feasible solutions to the Lagrange multiplier equations, and
therefore the only feasible minima, we see from comparing the function values that x∗ = x2 is
a global minimum.

We could also have utilized the second order conditions in the following way: note that
∇2 f (x) = 0 and ∇2h(x) = 2I for all x, hence ∇2 f (x)+λ∇2h(x) is in fact positive semi definite
if λ > 0, which yields only one feasible minimum: λ ∗ =

√
n/(2R) and x∗ = x2 as above.
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• Consider the following problem, for a given x0,u ∈ Rn:

minimize x2
1 + x2

2 + . . .+ x2
n

s.t. uT(x− x0) = 0.
(84)

Note, this can be interpreted as looking for the projection of the point z = 0 onto the hyper-
plane that passes through x0 and is orthogonal to u. Taking f (x) = xTx and h(x) = uT(x−x0),
we have that any minimizer must satisfy h(x) = 0 as well as

∇ f (x)+λ∇h(x) = 0 (85)

or
2x+λu = 0. (86)

The above gives us that x=−(λ/2)u, i.e., the minimizer must be in the direction (or opposite,
depending on the sign of λ ) of u. The constraint h(x) = 0 therefore gives us

uT(−(λ/2)u− x0) = 0 (87)

or

λ =−2
uTx0

||u||2
(88)

As the above is the unique solution for feasible λ , it must be the λ ∗ corresponding to the
minimizer, hence we have

x∗ =
uTx0

||u||2
u. (89)

From the above cases, it can be extrapolated that when dealing with linear or quadratic or similar
constraints and objective functions, the Lagrange multiplier equations are frequently algebraically
solvable. In general, however, they can produce a system of non-linear equations that, along with
the constraint equations themselves, can be difficult to solve. This prompts computational and
algorithmic approaches, as it did in the case for unconstrained optimization.

6.1.2 Discussion and Proof of the Lagrange Multiplier Theorem

To motivate the Lagrange Multiplier result, consider the case in a single dimension, which is to say:
at any local minimum x∗ of f satisfying h(x∗) = 0, ∇ f (x∗)+λ ∗∇h(x∗) = 0 for some unique λ ∗ (the
regularity condition is not a concern when there is a single constraint).

The equation h(x) = 0 can be taken as defining a surface in Rn (as xT x−R2 defines a sphere of
radius R). Any point on this surface is feasible for the problem. We may solving the problem in
the following way: imagine a particle that is free to move over this feasible surface, and imagine
that it is being ‘dragged’ by a current though space - when the particle is at x, it feels a pull on it
proportional to −∇ f (x). If there were no restriction h and the particle was free to move through
space, this would drag it towards a local minimum of f , and it would stop moving there, when
∇ f (x∗) = 0 and it feels no current.
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But taking the particle as restricted to move only on the surface defined by h, how can this current
pull it? At a differential level, if h is continuously differentiable, the only feasible directions of
motion are in directions tangent to the surface - any other direction immediately will pull the particle
off the surface, and is therefore not feasible (consider being restricted to move along a circle, for
example). It can be shown that at every point on the surface, the gradient ∇h(x) is normal to
the surface, which means that the feasible tangent directions are d such that ∇h(x)Td = 0. These
directions define the plane tangent to h at x.

With the particle restricted to move along the surface, if the particle is experiencing a pull propor-
tional to −∇ f (x), and at least some of that force is in a feasible direction d (i.e., (−∇ f (x))Td > 0),
then the particle will move in that direction. The particle will stop moving at a point x∗ when there
is no more force in any feasible direction, i.e., (−∇ f (x∗))Td = 0 for all feasible d at x∗. Note, as
the rate of change of f in any feasible direction is 0 (and since we arrived at the point following the
negative gradient of f ), we have that this stationary point x∗ is a local minimum.

But, the condition (−∇ f (x∗))Td = 0 for all d such that ∇h(x∗)Td = 0, i.e., −∇ f (x∗) has no pro-
jection in any direction orthogonal to ∇h(x∗), implies that the vectors ∇ f (x∗) and ∇h(x∗) must
be parallel to each other. Another way of stating this is that one is a scalar multiple of the other,
−∇ f (x∗) = λ∇h(x∗), or that for some unique λ ∗,

∇ f (x∗)+λ
∗
∇h(x∗) = 0. (90)

To some extent, the model above can be generalized to being restricted to multiple surfaces {hi(x) =
0}, which the result of the theorem: the gradient of f at a minimum must lie in the span of the
gradients of the constraints {∇hi}, or equivalently, the gradient of f at a minimum x∗ must be
orthogonal to all directions of feasible motion at x∗. Note, the assumption of regularity (linear
independence of the ∇hi(x∗)) ensures that the coefficients expressing ∇ f (x∗) in terms of the ∇hi(x∗)
are unique.

Hopefully, this provides some intuition as to why the result holds, and renders it something less than
magical. But the result may also be proven precisely. The full prove will not be presented in these
notes, but the idea behind it is useful, as motivation for and preview of an algorithmic approach to
follow. We return to the multiple constraint case, with the vector function h(x) containing all the
individual {hi}.
Essentially, consider defining a sequence of objective functions {Fk : Rn 7→ R} by

Fk(x) = f (x)+
1
2

k||h(x)||2 = f (x)+
1
2

k
m

∑
i=1

hi(x)2. (91)

Consider the problem of minimizing Fk as a sequence of unconstrained optimization problems.
Note, we are essentially augmenting the objective function f with a penalty for violating the con-
straints - as k→ ∞, the ‘cost’ of having large, or even non-zero values of the hi grows. Hence,
minima of the Fk will be increasingly forced towards points that both minimize f , and satisfy the
constraints {hi = 0}.
To simplify the presentation of the proof somewhat, for each k let x∗k be an unconstrained local mini-
mum of Fk, and assume that the sequence {x∗k} converges, x∗k→ x∗ where x∗ is a regular, constrained
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local minimum of f satisfying h(x∗) = 0. (Note: the meat of the full proof is the construction of
such a sequence {x∗k} with those properties.)

Note then that we have for each k,

0 = ∇Fk(x∗k) = ∇ f (x∗k)+ k∇h(x∗k)h(x
∗
k), (92)

where ∇h(x∗k) is m-column matrix where column i is the gradient ∇hi(x∗k).

Note, based on the assumption that x∗ is regular, i.e., ∇h1(x∗), . . . ,∇hm(x∗) are linearly independent,
since x∗k → x∗ we have that ∇h1(x∗k), . . . ,∇hm(x∗k) are linearly independent for sufficiently large k,
hence the matrix ∇h(x∗k) has linearly independent columns. By Prop. 4 in Section B, we have
therefore that ∇h(x∗k)

T∇h(x∗k) is positive definite, and therefore invertible.

Multiplying the above equation on the left by [∇h(x∗k)
T∇h(x∗k)]

−1∇h(x∗k)
T, we have

0 = [∇h(x∗k)
T
∇h(x∗k)]

−1
∇h(x∗k)

T
∇ f (x∗k)+ k[∇h(x∗k)

T
∇h(x∗k)]

−1
∇h(x∗k)

T
∇h(x∗k)h(x

∗
k)

= [∇h(x∗k)
T
∇h(x∗k)]

−1
∇h(x∗k)

T
∇ f (x∗k)+ k h(x∗k).

(93)

From the above, we have the limit that as k→ ∞, (as x∗k → x∗ and f , h are continuous)

k h(x∗k)→−[∇h(x∗)T
∇h(x∗)]−1

∇h(x∗)T
∇ f (x∗). (94)

Defining the vector λ
∗ =−[∇h(x∗)T∇h(x∗)]−1∇h(x∗)T∇ f (x∗), and returning to

0 = ∇Fk(x∗k) = ∇ f (x∗k)+ k∇h(x∗k)h(x
∗
k), (95)

we have in the limit as k→ ∞,
0 = ∇ f (x∗)+∇h(x∗)λ ∗. (96)

Note, based on the assumption that ∇h1(x∗), . . . ,∇hm(x∗) are linearly independent, the vector λ
∗

above is unique. The second order conditions (which distinguish a stationary point as a minimum
rather than a maximum) involve slightly more work, but again the starting point is analysis of the
unconstrained minima of the penalized objective function, which will have positive semi-definite
Hessians of Fk.

The full proof is worth looking up, but the takeaway should primarily be the perspective of con-
strained minima as limits of the unconstrained minima. This immediately suggests an algorithmic
approach for constrained optimization problems, which will be explored in the next section.

6.2 The Lagrangian Function and Sufficient Conditions

It is convenient to define the following function:

Definition 5 (The Lagrangian for Equality Constraints) The Lagrangian of a constrained opti-
mization problem for objective function f and equality constraints h(x) = 0 is given by

L(x,λ ) = f (x)+λ
Th(x). (97)
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Note that the Lagrangian is a linear function of the individual λ -coordinates, and ∇λ L(x,λ ) = h(x).

This function allows for a concise restatement of the necessary conditions theorem:

Theorem 7 (Lagrange Multiplier Necessary Conditions for Minima) Let x∗ be a local minimum
of f subject to h(x∗) = 0, and let x∗ be regular. Then there exists a unique vector of constants
λ
∗ = (λ ∗1 , . . . ,λ

∗
m) ∈ Rm such that

∇xL(x∗,λ ∗) = 0

∇λ L(x∗,λ ∗) = 0.
(98)

Additionally, if f and h are twice continuously differentiable,

dT
∇

2
xxL(x∗,λ ∗)d > 0 (99)

for all d ∈ Rn such that ∇h(x∗)Td = 0.

Additionally, we state but do not prove the following result, which gives sufficient conditions for a
minimizer. This result parallels the sufficient conditions in the unconstrained case, as the necessary
conditions above parallel the necessary conditions in the unconstrained case.

Theorem 8 (Lagrange Multiplier Sufficient Conditions for Minima) For f , h twice continuously
differentiable, let x∗ ∈ Rn and λ

∗ ∈ Rm satisfy

∇xL(x∗,λ ∗) = 0

∇λ L(x∗,λ ∗) = 0.
(100)

and for all d ∈ Rn such that d 6= 0 and ∇h(x∗)Td = 0, we have

dT
∇

2
xxL(x∗,λ ∗)d > 0. (101)

In this case, x∗ is a strict local minimum of f satisfying h(x∗) = 0.

6.3 Mixed Constraints

The results and analysis of the previous section extend fairly immediately to the case of constraints
defined by both equalities and inequalities. Let h(x)= 0 represent the system of hi(x)= 0 constraints
and g(x)6 0 represent the system of g j(x)6 0 constraints.

We define the following Lagrangian function for x ∈ Rn,λ ∈ Rm,µ ∈ Rr:

L(x,λ ,µ) = f (x)+
m

∑
i=1

λihi(x)+
r

∑
j=1

µ jg j(x)

= f (x)+λ
Th(x)+µ

Tg(x).

(102)

Additionally, it is convenient to define the concept of active constraints:
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Definition 6 For a system of inequalities g(x) 6 0, at a given point x ∈ Rn, the active constraints
are the indices j = 1, . . . ,r which realize the corresponding inequality constraint with equality:

A(x) = { j : g j(x) = 0}. (103)

Note that if x∗ is a constrained local minimum and j is an inactive constraint, then x∗ will also
be a constrained local minimum of the problem where the constraint g j(x) 6 0 is discarded. For
any active constraint, however, discarding that constraint may result in a problem where x∗ is not
a constrained local minimum. As such, active inequality constraints function much like equality
constraints, and inactive inequality constraints, roughly speaking, do not matter.

The importance of active versus inactive constraints will be discussed further shortly.

We have the following result:

Theorem 9 (The Karush-Kuhn-Tucker Optimality Conditions) Let x∗ ∈Rn be a constrained lo-
cal minimum of f subject to h(x∗) = 0 and g(x∗)6 0.

If x∗ is regular with respect to the {∇hi(x∗)} as well as the gradients of the active inequality con-
straint gradients {∇g j(x∗)} j∈A(x∗), then there is a unique pair of vectors λ

∗ ∈Rm and µ∗ ∈Rr such
that

∇xL(x∗,λ ∗,µ∗) = 0

µ
∗
j > 0 for all j = 1, . . .r

µ
∗
j = 0 for all j 6∈ A(x∗).

(104)

or equivalently,

∇xL(x∗,λ ∗,µ∗) = 0

µ
∗
j g j(x∗) = 0 for all j = 1, . . .r.

(105)

Additionally, if f ,h,g are twice continuously differentiable, then

dT
∇

2
xxL(x∗,λ ∗,µ∗)d > 0 (106)

for all d ∈ Rn such that ∇h(x∗)Td = 0 and ∇g j(x∗)Td = 0 for all j ∈ A(x∗).

Note, there is a sufficient condition version of the above result, which parallels Theorem 8 as a
sufficient condition version of Theorem 6, with the added assumption that the multipliers for active
inequality constraints be positive.

The above result parallels fairly well the result for the equality constraint case, with a couple of ex-
ceptions worth noting: i) the Lagrange multipliers for inactive inequality constraints are specifically
0, and the inactive constraints do not enter into the second order conditions - this effectively cor-
responds to the earlier observation that inactive inequality constraints can effectively be discarded
without altering a given solution to the problem; ii) the Lagrange multipliers for active inequality
constraints are restricted to be non-negative.
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The proof will not be presented here, but much of the discussion of the equality constraint case in
Section 6.1.2 applies here. A proof of the above result can be given in much the same way, defining
a penalized objective function that only penalizes g j(x)> 0.

In terms of the discussion in Section 6.1.2, however, the concept of ‘feasible directions of motion
as allowed by the constraints’ justifies the non-negativity assumption on the inequality constraint
multipliers: in particular, for a given constraint hi = 0, the feasible directions of motion are those
d ∈Rn that are in the tangent plane to the surface at x, or in other words are orthogonal to the normal
vector, ∇hi(x)Td = 0. For active inequality constraints, however, the range of feasible motion is
much larger: if x is on the surface g j = 0, then any direction d that is in the tangent plane to the
surface at x is feasible, as well as any direction d below the tangent plane, into the volume defined
by g j 6 0. Note, for any x in the interior of g j 6 0, all directions are feasible directions.

This lends a significance to the orientation of the gradients {∇g j(x)}, reflected in the non-negativity
conditions on the Lagrange multipliers. This non-negativity will be addressed again in the future
discussion on sensitivity.

Utilizing the KKT conditions to solve for minima can often develop a somewhat combinatorial
flavor, in terms of looking at what different solutions arise assuming which constraints are active or
inactive. Consider the following example: for non-trivial u,v ∈ Rn, and bu,bv ∈ R, with bu,bv < 0,
and further let us take u and v to be linearly independent,

minimize x2
1 + x2

2 + . . .+ x2
n

s.t. uTx6 bu

vTx6 bv.

(107)

Each constraint above defines a half of Rn by defining a plane and restricting x to lie on one side
of that plane. The full set of feasible x is therefore the intersection of these two half-spaces. Let
gu(x) = uTx−bu and gv(x) = vTx−bv.

We may proceed by cases, based on which constraints we take to be active:

A(x∗) = /0: In this case, taking both the u and v constraints as inactive, their Lagrange multipliers are
taken to be 0, and the necessary condition becomes

∇ f (x) = 0 (108)

which is solved uniquely by x = 0. However, in this case uTx−bu =−bu > 0 and vTx−bv =
−bv > 0 - both constraints are in fact violated at this solution. Hence, x = 0 is not a feasible
minima of the constrained problem.

A(x∗) = {u}: In this case, the necessary condition becomes

∇ f (x)+µu∇gu(x) = 0 (109)

for µu > 0, or or
2x+µuu = 0. (110)
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This has a unique solution (for a given µu) of x =−(µu)/2u. As u is the active constraint, we
must have gu(x) = 0, which can be utilized to solve for µu and give a final solution of

x∗u =
bu

||u||2
u. (111)

This will be a feasible minimum, as long as v is inactive, i.e., gv(x∗u)< 0 or

vTu
||u||2

bu < bv. (112)

If it is feasible, it will yield a function value of f (x∗u) = bu.

A(x∗) = {v}: By the symmetry of the problem, we may apply the analysis of the previous case to yield a
solution

x∗v =
bv

||v||2
v, (113)

which will be feasible if
uTv
||v||2

bv < bu. (114)

If it is feasible, it will yield a function value of f (x∗v) = bv.

A(x∗) = {u,v}: In this case, we take both u and v constraints to be active, i.e., gv(x) = 0 and gu(x) = 0. Note
we have that ∇gu(x) = u and ∇gv(x) = v are linearly independent, and hence the regularity
condition is satisfied.

In this case we have
∇ f (x)+µu∇gu(x)+µv∇gv(x) = 0 (115)

for µu,µv > 0, or
2x+µuu+µvv = 0. (116)

The above, along with the constraints that gu(x) = 0,gv(x) = 0, may be used to solve the
entire system to yield

µu =
−2(bvuTv−bu||v||2)
(uTv)2−||u||2||v||2

µv =
−2(−bv||u||2 +buuTv)
(uTv)2−||u||2||v||2

x∗uv =
(bvuTv−bu||v||2)
(uTv)2−||u||2||v||2

u+
(−bv||u||2 +buuTv)
(uTv)2−||u||2||v||2

v,

(117)

which can be shown to be feasible (under the constraints µu,µv > 0) so long as

bv
uTv
||v||2

> bu and bu
uTv
||u||2

> bv. (118)

The above solution can be shown to yield a function value of

f (x∗uv) =
||bvu−buv||2

||u||2||v||2− (uTv)2 . (119)

Which of these is the true minimum (and it can be shown via the second order conditions, or geo-
metric intuition about the objective function) will depend on the specific parameters involved.
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6.4 Example Problems

1 In the solution of Eq. (84), it is concluded via Lagrange multipliers that the minimizer must
be some scalar multiple of u, i.e., the minimizer must be a vector in the same or opposite
direction to u. Argue that this must be true, from the geometric interpretation of the problem.
Additionally; it was stated that the solution in Eq. (89) must be the minimizer. Prove that this
is true, and that this point is not actually a maximizer.

2 Let Q be a real symmetric matrix with λmin,λmax as the smallest and largest eigenvalues,
respectively. Using Lagrange multipliers, prove the following identity:

λmin||x||2 6 xTQx6 λmax||x||2. (120)

Hint: What is the largest and smallest value of xTQx for a given Q? Note that Q as an
orthonormal basis of eigenvectors. Also, it suffices to consider the case of ||x||= 1 - why?

3 Let {αi} be a set of constants such that αi > 0 and ∑i αi = 1. Use Lagrange multipliers to
solve

minimize α1x1 +α2x2 + . . .+αnxn

s.t.
n

∏
i=1

xαi
i = 1

xi > 0 for all i .

(121)

Hint: Consider the change of variables xi = eyi for yi ∈ R. What can you conclude about the
case of xi = 0 for some i?

4 Solve the following problem:

minimize x1−2x2

s.t. x2
1 + x2

2 6 4

(x1−3)2 + x2
2 6 4.

(122)

What is the geometry of the constraint set?

7 Analytic Based Algorithms

In this section, we consider algorithms based on the idea of analytically defined constraints. We
consider two particular cases, equality constraints:

X = {x ∈ Rn : h(x) = 0}, (123)

and inequality constraints
X = {x ∈ Rn : g(x) = 0}. (124)
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The Barrier or Interior Point Methods are better suited to inequality constraint problems, while
Penalty Methods are better suited to equality constraint problems. The concepts behind each
method may potentially be combined and applied to mixed constraint problems, as appropriate.

In general, the theme of this section is solving constrained optimization problems by reducing them
to a sequence of unconstrained optimization problems, whose solutions {x∗k} (hopefully) converge
to the solution of the constrained problem, x∗.

7.1 Barrier/Interior Point Methods

Let X = {x ∈ Rn : g j(x) 6 0 for j = 1, . . .r}, or more compactly, g(x) 6 0. Let S be defined as the
interior of X , that is, S⊂ X such that

S = {x ∈ Rn : g j(x)< 0 for j = 1, . . . ,r}. (125)

The central assumption (so as to ‘jumpstart’ the method) is that the interior is non-empty, so that
there is some x0 ∈ S. Barrier Methods proceed by augmenting the objective function f to math-
ematically create a barrier at the boundary of X , so that unconstrained optimization methods are
unable to step outside the constraint set. Consider the objective function

f (x)+ εB(x), (126)

where ε > 0 is very small, and B(x) increases to +∞ at the boundary of X . Over the interior of X ,
choosing ε and B appropriately, this augmented objective function will be approximately equal to
f , and hence a minimizer of the augmented objective function will (hopefully) approximately min-
imize f . The important concept however is the following; starting from a point in the interior of X
(i.e., x0), an unconstrained minimization algorithm applied to the augmented objective function will
never step outside the constraint set X - stepping outside of it will always lead to an increase in the
objective function, to infinity. Hence, if we begin in the interior of X , we may apply unconstrained
minimization methods and remain in the interior of X , satisfying the constraints.

The two most common barrier functions are the harmonic and the logarithmic barrier functions:

• Harmonic Barrier:
B(x) =

r

∑
j=1

1
−g j(x)

. (127)

• Logarithmic Barrier:

B(x) =−
r

∑
j=1

ln(−g j(x)). (128)

The logarithmic barrier function has proven to be particularly useful in application to Linear Pro-
gramming problems; the first polynomial-time LP algorithms were based on related techniques.

This leads to the following construction: Let {εk} be a decreasing sequence of positive values such
that εk → 0 as k→ ∞. For a given barrier function B, we may construct a sequence of augmented
objective functions

fk(x) = f (x)+ εkB(x). (129)
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We then define the sequence {x∗k} (with x∗0 = x0) to be the sequence of unconstrained global minima
of fk, i.e., for k > 0,

x∗k = arg minx∈Rn fk(x). (130)

Note, from a computational or algorithmic perspective, when solving for x∗k+1, it can frequently be
useful to use x∗k as the initial guess for minimizing fk+1. This is what is known as a warm start.

Ideally, as εk → 0, the barrier function will have less and less of an impact, and hence the min-
ima of fk should increasingly correspond to the minima of f over the constraint set X , and hence
(hopefully), x∗k should converge to some minimum x∗ of f over X .

We do have the following result:

Theorem 10 If the sequence {x∗k} is defined to be the successive, unconstrained global minima of
fk, then if x∗k → x∗ as k→ ∞, we have that x∗ is a global minimum of f over the constraint set X.

Of course, computing x∗k as a global minimum of fk is ambitious, based on established unconstrained
minimization algorithms; in general, we may only hope to compute, approximately, local minima.
However, if we have additional results on the structure of f , for instance f as strictly convex over
X , we may frequently conclude that the minima of fk are unique and global.

7.2 Penalty Methods

In the case of barrier methods, the constraint set was (analytically) defined to be a volume in Rn, and
the barrier method proceeded by moving through this volume, minimizing a sequence of objective
functions that approximated the primary objective function. In the case of equality constraints,
however,

X = {x ∈ Rn : h(x) = 0}, (131)

it can be difficult to restrict ‘motion’ in such a way as to remain inside the constraint set (indeed,
finding an initial point in the constraint set may be difficult in itself).

Therefore, if Barrier Methods can be thought of in terms of working from the inside of the constraint
set out, Penalty Methods are constructed to work from the outside in, producing a sequence of points
outside the constraint set that converges to a minimum of f inside the constraint set. In particular,
we augment the objective function with a penalty or cost for violating the constraints.

Let P(δ ) be a positive, monotonically increasing function for δ > 0. In this case, for c > 0 we may
consider the augmented objective function over all Rn

f (x)+ cP(||h(x)||). (132)

The farther a given x is from satisfying the constraints, i.e., the larger ||h(x)||, the larger the value of
the augmented objective function. This penalty function creates a sort of pressure towards satisfying
the constraint, when unconstrained minimization algorithms are applied. The larger the value of c,
the more unconstrained minimization algorithms will be driven toward X .

The most common penalty function is the quadratic penalty, P(δ ) = 1
2 δ 2. In some contexts however,

depending on how f scales with h and how close you start to a local minimum, it may be useful to
consider alternative penalty functions as well, such as P(δ ) = eδ .
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We therefore introduce the following sequence of unconstrained minimization problems: Let {ck}
be a positive, increasing sequence, and define the augmented objective function

fk(x) = f (x)+ ckP(||h(x)||). (133)

We then define the sequence {x∗k} to be the sequence of global, unconstrained minimizers of the
augmented objective functions:

x∗k = arg minx∈Rn fk(x). (134)

Note again, it may be useful to recycle x∗k as an initial guess for the minimum of fk+1, as a warm
start.

Ideally, as ck increases, a larger and larger cost is paid for not satisfying the constraints; this (hope-
fully) creates a pressure drawing the x∗k toward the constraint set X , such that {x∗k} converges to a
minimum of f over X . Indeed, we have the following theorem:

Theorem 11 Taking P(δ ) = (1/2)δ 2 and ck → ∞ as k→ ∞: If the sequence {x∗k} is defined to be
the successive, unconstrained global minima of fk, then if x∗k → x∗ as k→ ∞, we have that x∗ is a
global minimum of f over the constraint set X.

This should give some confidence in the utility of the method. However, again the result is predi-
cated on the ability to identify unconstrained global minima of each successive augmented objective
function. In reality, we must be content with approximating local minima (given finite computa-
tional resources). But stronger structural assumptions on f , such as convexity, may be useful here.

7.3 The Augmented Lagrangian and Multiplier Methods

As an extension of general penalty methods, we have the augmented Lagrangian method. Con-
sider the following function:

Lc(x,λ ) = f (x)+λ
Th(x)+

1
2

c||h(x)||2. (135)

For a given λ ,c, consider the problem of minimizing (in an unconstrained fashion) Lc(x,λ ). If c
is large relative to the scale of λ , the penalty term will dominate the additional Lagrangian term,
and hence minimization of Lc(x,λ ) will approximate minimization of f subject to the constraint
h(x) = 0.

Indeed, we have the following theorem:

Theorem 12 Let ck be a positive, increasing sequence with ck → ∞ as k → ∞. Let {λ k} be a
bounded sequence. Let {x∗k} be the sequence of global minimizers:

x∗k = arg minx∈RnLck(x,λ k). (136)

In this case, if x∗k → x∗, then x∗ represents a global minimum of f over X.
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The augmented Lagrangian method presents two main advantages to the pure penalty method: i)
a theoretical basis for approximate minimization of the augmented objective functions; ii) con-
vergence can be dramatically improved (see associated Mathematica workbook) by choosing the
sequence λ k to successively approximate a Lagrange multiplier λ

∗. We have the following results:

Theorem 13 Let xk satisfy
||∇xLck(xk,λ k)||6 εk, (137)

where {λk} is bounded, {ck} is positive, increasing to infinity, and {εk} is positive, decreasing to 0.
Note, xk may be viewed as an approximate minimum of the augmented Lagrangian, as

∇xLck(x
∗
k ,λ k) = 0. (138)

If {xk} converges to x∗ such that ∇h(x∗) has rank m (i.e., the point x∗ is regular), then

λ k + ckh(xk)→ λ
∗ (139)

where

∇ f (x∗)+
m

∑
i=1

λ
∗
i ∇hi(x∗) = 0 and h(x∗) = 0. (140)

Note, the above result suggests that under the appropriate conditions, it is not necessary to compute
the global minimum of each augmented Lagrangian - it suffices to consider sufficient approxima-
tions to local minima. Any limit point that results from this will satisfy the first order Lagrange
necessary conditions for a minimum. Obviously the choice of εk will affect the rate of convergence,
as will the ck and the choice of λ k.

Additionally, this suggests a scheme for successively estimating the Lagrange multiplier corre-
sponding to a constrained minimum, the so called Method of Multipliers: take

λ k+1 = λ k + ckh(xk) (141)

as long as the resulting vector is not too large in magnitude (consider taking λ k+1 = λ k in such a
case). It can be shown in many cases that if λ

∗ may be effectively approximated by such a scheme,
convergence can be guaranteed without taking ck to ∞; this can stabilize many numerical algorithms.
In general, as ck increases, the rate of convergence of λ k increases as well.

In general, if the xk are sufficiently accurate estimates of the local minima of the augmented La-
grangian, it can be shown that the rate of convergence in the errors, ||xk− x∗|| and ||λ k−λ

∗||, is
linear, improving to superlinear if ck increases to infinity.

Some important computational considerations: The cost factor ck should become sufficiently large
eventually - however starting it too large can bias the algorithm towards minimizing the penalty
function alone, rather than attempting to minimize the objective function f simultaneously, which
will lead to poor convergence properties. Similarly, if ck increases too slowly, this can lead to
poor convergence of the multipliers λ k. Experimentation may be useful for judging appropriate
parameter values. If the unconstrained minimization of the augmented Lagrangian is performed
with a powerful enough method such as Newton’s method, a frequent scheme is to increase the
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value ck by a factor of β ∈ [5,10] in each step; less effective means may require a slower increase
in ck. Another technique is to tie the increase in ck to the reduction in the constraint violated
||h(xk)||/||h(xk−1)||, only increasing ck if a sufficient reduction in constraint violation has not been
achieved.

7.4 Example Problems

1 What are the gradients of the logarithmic and harmonic barrier functions? If the g j are convex,
are these barrier functions convex?

8 Duality

In the previous sections, we examined how the motivating n-dimensional constrained minimization
problem (for instance, in the equality case)

minimize f (x)

s.t. h(x) = 0,

x ∈ Rn

(142)

could be approached by embedding it in a larger (n+m)-dimensional problem, centered on the
Lagrangian function

L(x,λ ) = f (x)+λ
Th(x), (143)

and finding the solutions (x∗,λ ∗) to the system of Lagrange multiplier equations.

Taking this one step further, the problem can be extended by a sort of symmetry into an optimization
only over the λ -variable (the ‘dual’ variables), as an m-dimensional maximization problem. This is
the essence of duality, which is the subject of this section. This has many important implications
and applications, both in terms of understanding the underlying structure of optimization problems,
and potentially granting many computational advantages as well, for instance in simplifying the
problem or admitting new algorithmic approaches. In many cases, for instance when r < n, the
‘dual’ optimization problem may be much more computationally tractable, and many problems of
practical concern are structurally much simpler in the dual formulation. Additionally, the treat-
ment presented here will allow extension and application of the theory to non-differentiable or even
discrete cases.

Consider, for the moment, the more generalized problem, subject for now only to equality con-
straints:

minimize f (x)

s.t. h(x) = 0,

x ∈ X ,

(144)

where X is some domain of interest (potentially a subset of Rn, potentially Rn, or potentially dis-
crete).
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Denote the primal optimum value as

f ∗ = inf
x∈X ,h(x)=0

f (x). (145)

We utilize the infimum in the above for complete generality, to account for the case that the mini-
mum is not actually realized. In the remainder of the section we will assume that there are feasible
solution x, and that the optimum value is bounded, i.e., −∞ < f ∗ < ∞.

The definition of Lagrange multipliers depended explicitly on a notion of differentiability of the
objective and constraint functions. Here, we generalize this to the concept of geometric multipliers:
a geometric multiplier λ

∗ if
f ∗ = inf

x∈X
L(x,λ ∗). (146)

Note, this is a natural extension of the notion of Lagrange multipliers, as they implicitly satisfy
f (x∗) = L(x∗,λ ∗) due to the nature of the equality constraints. But again, we make no assumption
concerning differentiability or even the underlying domain here - in the case of differentiability, it
can be shown that Lagrange multipliers and geometric multipliers correspond for optimal x∗.

Taking a geometric multiplier λ
∗ as known, however, all optimal solutions to the primal problem

can be recovered via unconstrained optimization, minimizing L(x,λ ∗) over all x. Namely, we have
the following result:

Proposition 2 Let λ
∗ be a geometric multiplier. A point x∗ is a global minimum of the primal

problem iff x∗ is feasible and x∗ ∈ arg minx∈X L(x,λ ∗).

Proof. Let x∗ be a global minimum of the primal problem, and hence feasible with respect to the
constraints, i.e., h(x∗) = 0. Then

f ∗ = f (x∗) = f (x∗)+λ
∗h(x∗) = L(x∗,λ ∗)> inf

x∈X
L(x,λ ∗) = f ∗, (147)

the last equality following by the definition of a geometric multiplier. It follows then that equality
is realized at every step, and L(x∗,λ ∗) = minx∈X L(x,λ ∗).

To complete the proof in the other direction, note that taking x∗ as feasible, and x∗ ∈ arg minx∈X L(x,λ ∗),
we have that f (x∗)= L(x∗,λ ∗)=minx∈X L(x,λ ∗)= f ∗. Hence, x∗ is a global minimum of the primal
problem. �

Note importantly: no assumptions regarding differentiability or the underlying domain were made.

This indicates the importance of geometric multipliers λ
∗ as objects worth finding in themselves.

This motivates the definition of the dual function:

q(λ ) = inf
x∈X

L(x,λ ), (148)

and the dual problem:

maximize q(λ )

s.t. λ ∈ Rm.
(149)
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It will be shown that solutions λ
∗ (optimal dual solutions) essentially yield geometric multipliers.

This will be made precise presently. Note, the dual problem is taken to be unconstrained. It can
be constrained however, in the following way: noting that q may sometimes be infinite, define the
domain of the dual function as

D = {λ ∈ Rm : q(λ )>−∞}. (150)

In this case, the dual problem still has important analytic properties, namely:

Proposition 3 The dual function q is concave over its domain D, which is a convex subset of Rn.

The relationship between the dual problem and the primal problem (and hence the utility of the
dual) is summarized in the following relation: let x′ ∈ X be feasible, i.e., h(x′) = 0. Then,

q(λ ) = inf
x∈X

L(x,λ )6 f (x′)+λ
Th(x′) = f (x′)6 f ∗. (151)

Taking the supremum of the above over λ (denote q∗ on the left), we have the following result:

Theorem 14 (The Weak Duality Theorem and Characterization of Geometric Multipliers) We
have the following, always

q∗ 6 f ∗. (152)

Additionally, if there is no duality gap, i.e., q∗ = f ∗, then any geometric multiplier is a dual optimal
solution and any optimal dual solution is a geometric multiplier. If there is a duality gap, there are
no geometric multipliers.

Proof. The first result stems, as stated, from taking the supremum over λ
∗ above. To prove the

second part, note that in the case that there is no duality gap, we have for any geometric multiplier
f ∗ = q(λ ∗) 6 q∗ which, by the initial result above, implies q(λ ∗) = q∗ and hence it is an optimal
dual solution. Similarly, if there is a duality gap, i.e., q∗ < f ∗, no such λ

∗ satisfying f ∗ = q(λ ∗) can
exist.

The weak duality theorem above is useful in the sense that the dual problem always provides a
lower bound on the value of the primal problem. When there is no duality gap, however, the primal
problem can be exchanged for the dual problem, as they yield equivalent optimal values. This is
particularly useful when the dual problem is of particularly simple structure.

We pause here to observe that the above results can be extended naturally and almost immediately
to the case of inequality constraints g(x)6 0, extending the Lagrangian to

L(x,λ ,µ) = f (x)+λ
Th(x)+µ

Tg(x), (153)

and extending the definition of geometric multipliers appropriately, now with the added constraint
that µ > 0, and the introduction of complementary slackness conditions (as seen in the correspond-
ing results for Lagrange multipliers) that µ∗j g j(x∗) = 0 for j = 1, . . .r. The dual function is naturally
extended, as is the dual problem, with the additional constraint on µ . The weak duality theorem
remains as is.

The following two cases exhibit no duality gap, and hence the primal problem may be exchanged
for the dual problem:
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• Let f be convex over Rn, and let the constraints be linear, i.e., X as polyhedral in Rn. Ad-
ditionally, take f ∗ as finite. In this case, there is no duality gap, and there exists at least one
geometric multiplier.

• Let f be convex quadratic and let the constraints be linear, i.e., X as polyhedral in Rn. Ad-
ditionally, take f ∗ as finite. In this case, thre is no duality gap, and primal optimal and dual
optimal solutions exist.

We consider two examples of the above cases, in which we may utilize the dual problem to solve or
simplify the primal problem.

Example One: Consider the problem of projection onto a linear subspace, i.e., for fixed z ∈ Rn,
matrix A ∈ Rm×n:

min ||z− x||2

s.t. Ax = 0.
(154)

In this case, the Lagrangian is given by L(x,λ ) = ||z−x||2 +λ
TAx. Hence we may express the dual

function (as an unconstrained optimization problem):

q(λ ) = inf
x∈Rn

[
||z− x||2 +λ

TAx
]

= inf
x∈Rn

[
xTx+

(
AT

λ −2z
)T

x
]
+ ||z||2

(155)

Note, in the usual way, the above is realized when 2x+(ATλ −2z) = 0, or

x∗ =−1
2
(
AT

λ −2z
)

q(λ ) =
1
4
(
AT

λ −2z
)T (

AT
λ −2z

)
− 1

2
(
AT

λ −2z
)T (

AT
λ −2z

)
+ ||z||2

=−1
4
(
AT

λ −2z
)T (

AT
λ −2z

)
+ ||z||2

=−1
4

λ
TAAT

λ + zTAT
λ

(156)

Hence, the dual problem may equivalently be expressed as the unconstrained problem

max − 1
4
(
AT

λ −2z
)T (

AT
λ −2z

)
+ ||z||2

s.t. λ ∈ Rm.
(157)

In terms of solving for the solution λ
∗, note that the +||z||2 is constant, and thus may be ignored,

and we may dispense with the −1/4 factor to turn it into again a minimization problem,

min
(
AT

λ −2z
)T (

AT
λ −2z

)
s.t. λ ∈ Rm.

(158)
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As this is an unconstrained problem, we may apply the usual techniques to it, in particular observing
that (expanding and taking the gradient, setting it equal to 0), any solution λ

∗ must satisfy

AAT
λ
∗ = 2Az. (159)

Example Two: Consider the following problem, for symmetric, positive definite Q, and fixed v:

min
1
2

xTQx

s.t. vTx> 1.
(160)

The Lagrangian of the above is given by L(x,µ) = (1/2)xTQx+ µ(1− vTx). This leads to a dual
function of

q(µ) = inf
x∈Rn

[
(1/2)xTQx+µ

(
1− vTx

)]
, (161)

which is maximized taking Qx∗−µv = 0, or x∗ = µQ−1v:

q(µ) =
[
(1/2)µ2vTQ−1v+µ

(
1−µvTQ−1v

)]
= µ− 1

2
µ

2vTQ−1v.
(162)

The dual problem is then immediately

max µ− 1
2

µ
2vTQ−1v

s.t. µ > 0.
(163)

Note importantly: because of the structure of the constraints, by exchanging from the primal to
the dual we have traded an n-dimensional constrained optimization problem for a 1-dimensional
constrained optimization problem. This is a dramatic simplification.

Note that the unconstrained maximum of the above objective function occurs when 1 = µ∗vTQ−1v
or

µ
∗ =

1
vTQ−1v

> 0. (164)

As the above solution is strictly positive, it is also the constrained maximum. Substituting, this
yields an optimal solution of

x∗ =
Q−1v

vTQ−1v
(165)

and an optimal value of
1
2

1
(vTQ−1v)

. (166)

The following results, known as the Slater Constraint Qualification give a condition in a general
case for there being no duality gap, and the existence of a geometric multiplier. In particular, in the
inequality constraint case:

min f (x)

s.t. g(x)6 0

x ∈ X ,

(167)
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with the following assumptions, that there exist feasible points x ∈ X with g(x) 6 0, the optimal
value f ∗ is finite, X is a convex subset of Rn, and the functions f and {g j} are convex over X . In
addition, (and this is the Slater qualification), there exists an interior point x′ ∈X such that g(x′)< 0.

In this case, we have that there is no duality gap, and there exists at least one geometric multiplier.

8.1 Separable Problems

It is often the case, particularly in large data applications, that we can consider the contribution to
both the objective function and the various constraints separately for instance for different subsets
of data. For i = 1, . . . ,N, let xi represent the variable associated with ‘block’ i, and fi, hi, g

i
the

objective function and constraint contributions of this block, and consider the problem

min
N

∑
i=1

fi(xi)

s.t.
N

∑
i=1

hi(xi) = 0

N

∑
i=1

g
i
(xi)6 0.

(168)

In this case, we may express the Lagrangian as

L(x1, . . . ,xN ,λ 1, . . . ,λ N ,µ1
, . . . ,µ

N
) =

N

∑
i=1

(
fi(xi)+λ

T
i hi(xi)+µ

Tg
i
(xi)
)
. (169)

The dual function then becomes

q
(
{λ i},{µ i

}
)
= inf
{xi∈Xi}

[
N

∑
i=1

(
fi(xi)+λ

T
i hi(xi)+µ

Tg
i
(xi)
)]

=
N

∑
i=1

inf
xi∈Xi

(
fi(xi)+λ

T
i hi(xi)+µ

Tg
i
(xi)
)

=
N

∑
i=1

qi(λ i,µ i
),

(170)

where
qi(λ i,µ i

) = inf
xi∈Xi

[
fi(xi)+λ

T
i hi(xi)+µ

Tg
i
(xi)
]
. (171)

In this way, the problem of maximizing q
(
{λ i},{µ i

}
)

subject to the constraints {µ
i
> 0} can be

exchanged for N separate problems of the form

max qi(λ i,µ i
)

s.t. µ
i
> 0

λ i ∈ Rmi .

(172)

This can represent a significant dimension reduction and hence significant computational savings,
for problems of this form.
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8.2 Example Problems

1 Prove Prop. 3. Hint: Consider L(x,αλ +(1−α)λ ′).

2 Formulate the primal and dual problems for linear programming within the context of the
material in this section.

3 Consider the problem of minimizing ey subject to
√

x2 + y2 6 x, for (x,y) ∈R2. Calculate f ∗

and q∗. Is there a duality gap?

A The Extreme Value Theorem

Taking X ⊂ Rn to be closed and bounded, we have via the Heine-Borel Theorem that X is com-
pact. What this means practically is that given any sequence x1,x2, . . . ∈ X there is a subsequence
xk1

,xk2
, . . . such that xkn

converges to some x′ ∈ X .

Let f ∗ = infx∈X f (x), i.e., f ∗ 6 f (x) for all x ∈ X . The goal is to identify some x∗ ∈ X such that
f ∗ = f (x∗). To do so, consider defining a sequence {xk} in such a way that for any k > 1,

f (xk)− f ∗ 6
1
k
. (173)

By the definition of the infimum, such a sequence must exist.

Because X is compact, there is a sub-sequence {xkm
} that converges to some x′ ∈ X as m→ ∞, i.e.,

lim
m→∞
||xkm
− x′||= 0. (174)

We will show that f (x′) = f ∗.

Because f is continuous, it must be that f (xkm
) converges to f (x′), which is to say that for any ε > 0,

| f (xkm
)− f (x′)|< ε for all sufficiently large m. However, we thus have for all sufficiently large m,

06 f (x′)− f ∗ 6 | f (x′)− f (xkm
)|+ f (xkm

)− f ∗ 6 ε +
1

km
. (175)

Taking m→ ∞, the above gives that 0 6 f (x′)− f ∗ 6 ε . As this holds for ε > 0, taking ε → 0 we
have

f (x′)− f ∗ = 0, (176)

or that x′ realizes the minimal function value f ∗, i.e., taking x∗ = x′,

f (x∗) = min
x∈X

f (x). (177)

B Mathematical Background

Proposition 4 Let A be an n by m matrix. If the columns of A are linearly independent, then ATA is
positive definite.
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Proof. Note that for any x ∈ Rm, we have xTATAx = (Ax)T(Ax) = ||Ax||2. If xTATAx = 0, we
therefore have that Ax = 0. However, if the columns of A are linearly independent, then the only
solution is x = 0. Hence, ATA is positive definite. �
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