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Abstract

Recent results by Toda, Vinay, Damm, and Valiant have shown that the complexity of the
determinant is characterized by the complexity of counting the number of accepting compu-
tations of a nondeterministic logspace-bounded machine. (This class of functions is known as
#L.) By using that characterization and by establishing a few elementary closure properties,
we give a very simple proof of a theorem of Jung, showing that probabilistic logspace-bounded
(PL) machines lose none of their computational power if they are restricted to run in polynomial
time.

We also present new results comparing and contrasting the classes of functions reducible to
PL, #L, and the determinant, using various notions of reducibility.

1 Introduction

One of the most important and in
uential early results of complexity theory is the theorem of [47]

showing that the complexity of computing the permanent of an integer matrix is characterized

by the complexity class #P of functions that count the number of accepting computation paths

of a nondeterministic polynomial-time machine. It is perhaps surprising that well over a decade

passed before it was discovered that an equally-close connection exists between the complexity of

computing the determinant of a matrix and the class #L (de�ned in [5]) of functions that count

the number of accepting computation paths of a nondeterministic logspace-bounded machine. In

order to state this connection more precisely, let us de�ne GapL to be ff : f(x) = g(x)� h(x) for

some g and h in #Lg. (This de�nition is by analogy to the class GapP, consisting of the di�erence

of #P functions, which is de�ned and studied in [17, 36, 22].)
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Although stated in di�erent ways, the results of [49, Theorem 6.5], [44, Theorem 2.1], [16], and

[48, Theorem 2] show the following fact:

Theorem 1 [44, 16, 49, 48] A function f is in GapL i� f is logspace many-one reducible to the

determinant.

(A function f is logspace many-one reducible to the determinant if there is a function g computable

in logspace such that f(x) (viewed as a number written in binary) is equal to the determinant of

matrix g(x).)1 The proof given in [44] is particularly clear and direct: Toda shows that the

determinant (of integer matrices) is reducible to iterated matrix multiplication over the integers

(using [7]), which in turn is reducible to iterated matrix multiplication over f0; 1;�1g, which in turn

is reducible to a canonical GapL-complete problem, which in turn is reducible to the determinant.

We remark that the logspace many-one reductions presented in [44], can in fact be computed by

uniform AC0 circuits; we will use this fact later.

In this paper we use Theorem 1 to give a very simple proof of a theorem of Jung [27], concerning

the complexity class PL. PL is de�ned to be the class of languages A for which there exists a

probabilistic Turing machine (in the sense of [19]; that is, a Turing machine with access to a source

of unbiased random bits), such that on input x the machine never uses more than log jxj space, and

x 2 A if and only if the probability that the machine reaches an accepting con�guration is greater

than one half. Although the de�nition of PL is straightforward, it turns out that the complexity

of PL is rather di�cult to analyze, in part because probabilistic logspace machines can perform

useful work after exponentially many computation steps. An easy way to see this is to note that

the s-t connectivity problem (a standard NL-complete set) can be accepted with zero error by a

PL machine that follows a randomly-chosen path from vertex s, accepting if vertex t is reached,

and otherwise trying another randomly-chosen path, and so on; if a path exists, it will eventually

be found (with probability one).

Gill showed in [19] that PL is contained in PSPACE. This was improved to DSPACE(log6 n)

in [41], but it was not until the appearance of [8] that it was even known that PL is contained

in P; [8] shows that PL is contained in NC2, and this can be improved slightly to TC1 (the

1This de�nition of \functional many-one reducibility" is from [5]. It should be noted that the notion of one function
being \many-one reducible" to another is sometimes de�ned in a much less restrictive way. For example, it is shown
in [53, 11] that the permanent of zero-one matrices is \many-one complete" for #P, using a less restrictive version
of \many-one reductions." On the other hand, it follows from [47] that the permanent of integer matrices cannot be
complete for #P or GapP using our de�nition of \many-one reduction" unless P = �P (since the permanent and the
determinant are equal mod 2). That is, the relationship between the determinant and #L is even closer than the
relationship that is known to exist between the permanent and #P.
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class computed by logarithmic-depth threshold circuits).2 Similarly, PL was not known to be

closed under complementation until a complicated proof was given in [42]; a much simpler proof

subsequently appeared in [39]. The source of all this di�culty was the fact, already alluded to, that

probabilistic logspace machines cannot obviously be restricted to run in polynomial time without

loss of computational power. However, Jung showed in [27] that, at least in the unbounded error

model (which de�nes the class PL), the polynomial-time restriction causes no loss of power. The

proof presented in [27] is complicated; we present an easy proof in Section 3.

Note that Theorem 1, combined with our easy proof of Jung's theorem, give an alternative

proof of the result of [8] concerning the complexity of PL, as well as a making closure of PL under

complement completely obvious.

Note that it would be remarkable if a theorem analogous to Jung's theorem could also be proved

in the bounded error case. We have already seen that NL can be accepted with bounded (in fact

zero) error; thus this would in some sense provide a non-uniform version of L=NL (i.e., L/poly =

NL/poly). Furthermore, Nisan [33] has shown that bounded-error, polynomial-time logspace can

be simulated in polynomial time and space log2 n; hence extending Jung's theorem to bounded

error would provide a small-space polynomial-time algorithm for transitive closure. All of these

consequences would be surprising. We will not discuss bounded-error probabilistic logspace in the

remainder of the paper; for more information on the bounded-error classes, see [9].

Let DET denote the determinant function. (Do not confuse this with the de�nition of [15],

where DET is used to denote the class of functions NC1-reducible to the determinant.) Theorem

1 allows one to show that LDET = L#L, as well as AC0(DET) = AC0(#L) and NC1(DET) =

NC1(#L), etc. However, no logspace-analog of the theorem PPP = P#P is known, and we suspect

that no such analog exists. For example, although we show that any of the high-order O(logn)

bits of a #L function can be computed in LPL, we know of no reason to suspect that the middle or

low-order bit of a #L function can be computed in this way.

For most natural problems A, the class of things reducible to A remains the same regardless of

the notion of reducibility that is used. For instance, NL is the class of languages reducible to s-t-

connectivity under logspace many-one or Turing reductions, or under 1-L reductions or quanti�er-

free projections or NC1 or AC0 reductions or under any of the many other low-level reductions

that have been studied in the literature. However, DET does not seem to have this property. In

Section 6 we present characterizations of the classes reducible to PL and #L under various notions

2The complete history of the complexity of PL is even more complicated. The interested reader may wish to
consult [8, p. 115], [25], [43, p. 111], and [20]. The related notion of probabilistic �nite automata has also been
studied in depth; for recent results and references, see [31, 32].
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of reducibility. For example, AC0(PL) is equal to the hierarchy PLPL:�
:PL

.

2 Basic Facts about GapL

The class #L was de�ned and studied in [5]; #L is the class of functions f such that, for some

nondeterministic logspace-bounded machineM , f(x) is the number of accepting computation paths

of M on x. As in [5] we restrict our de�nition to those machines M that halt on all computation

paths on all inputs; clearly the running time is polynomial. (Otherwise, the number of accepting

computation paths can be in�nite.) Let FL denote the class of functions computed in (deterministic)

logspace. It is noted in [5] that FL � #L.

The following de�nitions are adapted from [17]. Given a nondeterministic Turing machine M

that halts on all computation paths on all inputs, let gapM(x) be [number of accepting paths of

M on input x] � [number of rejecting paths of M on input x]. Let GapL be fgapM : M is a

nondeterministic logspace-bounded Turing machineg.

We have de�ned #L and GapL functions to be functions mapping �� to the integers; however, it

is convenient to assume certain conventions concerning how these values are encoded. (For instance,

if leading zeros were not written, then it would be pointless to talk about the \high-order bit" of

a #L function.) Thus we assume that there is some constant k such that a #L function is always

represented in binary, using exactly nk bits. One could devise other conventions, but they would

not a�ect the theorems in any interesting way. GapL functions will be encoded similarly, where

the high-order bit records the sign.

Let PL(poly) denote the class of sets accepted by PL machines with the restriction that the

machines run in polynomial time. In the next section, we will show that this class is equal to PL.

Given function classes C and D, let C � D be the class of functions ff � g : f 2 C and g 2 Dg.

The following elementary results relating #L, GapL, and PL(poly) are easy to establish via

trivial modi�cations to the proofs of the analogous results in [17]

Proposition 2 GapL = #L � #L = #L � FL = FL � #L.

Proposition 3 The following are equivalent:

1. A 2 PL(poly).

2. 9f 2 #L such that x 2 A i� the high order bit of f(x) is 1.

3. 9f 2 GapL such that x 2 A i� f(x) > 0.
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Corollary 4 Pos.DET 2 PL(poly), where Pos.DET is the set of all integer matrices with deter-

minant > 0.

Proof. Immediate from Theorem 1 and Proposition 3.

It is clear that PL(poly) is closed under complement; the usual proof that PP is closed under

complement carries over to this case. Thus Corollary 4 and Theorem 1 show immediately that the

following sets are complete for PL(poly) under �log
m reductions [26]:

� The set of integer matrices with determinant > 0.

� The set of integer matrices with determinant � 0.

� f(A;m) : DET(A) > mg

� f(A;m) : DET(A) � mg

� f(A;B) : DET(A) > DET(B)g

� f(A;B) : DET(A) � DET(B)g

3 A simple proof of Jung's Theorem

In this section we de�ne nondeterministic logspace many-one reducibility �FNL
m . We show that

PL(poly) is closed under �FNL
m , and we show that every set in PL is �FNL

m -reducible to a set in

PL(poly), and hence that PL = PL(poly).

The class FNL of functions computable via NC1 circuits with oracles for NL was de�ned and

studied in [4], where it was noted that FNL admits many alternative characterizations, including

the following:

� f is in FNL i� f is computed by a logspace-bounded oracle Turing machine with an oracle

for NL.

� f is in FNL i� jf(x)j = jxjO(1) and the language f(x; i; b) : b 2 � [ f$g and the i-th symbol

of f(x) = bg 2 NL, where the presence of (x; i; $) indicates that jf(x)j < i.

De�nition 1 Let A and B be languages. We say that A�FNL
m B if there is a function f 2 FNL

such that for all x; x 2 A() f(x) 2 B.

Theorem 5 If A�FNL
m B 2 PL(poly), then A 2 PL(poly).
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Proof. Let M be a PL(poly) machine accepting B, and let f be the FNL function reducing A

to B. Let N be the NL machine (with polynomial run time) deciding membership in the set

f(x; i; b) : symbol i of f(x) is bg.

Let M 0 be a machine that, on input x, begins simulating the behavior of M on input f(x).

Each time the i-th symbol of f(x) is needed, M 0 will probabilistically choose a symbol b 2 �[ f$g

and simulate N on input (x; i; b), using coin 
ips to simulate the nondeterminism of N . If the

simulation of N accepts, then M 0 will continue, using symbol b. If the simulation of N rejects, then

M 0 will 
ip one more coin and halt, accepting i� the outcome of the coin 
ip is \1".

It is easy to verify that M 0 accepts x with probability greater than one half i� x 2 A.

Theorem 6 PL = PL(poly).

Proof. Let M be a PL machine accepting language A, and let input x be given. As in the proof of

Theorem 6.4 of [19], we will construct a Markov chain modeling the behavior ofM on x, where state

1 of the chain is the initial con�guration, state r is the (unique) accepting con�guration, state r�1

is a rejecting, halting con�guration, and there is a state of the Markov chain for each con�guration

of M , so that each probability pi;j 2 f0; 12 ; 1g records the probability of going to con�guration j

from i.

Using an oracle from NL, it is easy to modify this Markov chain by removing all states with no

path to the accepting con�guration. Any transition in the original chain to one of these removed

states is replaced by a transition to a unique rejecting state. The unique accepting and rejecting

states are made \absorbing" states, by having the chain loop once it reaches either of those states.

Call this new chain B. We have observed that transition matrix B can be constructed from x via

an FNL computation. Let m be the number of states in B, other than the two absorbing states.

Let xi be the probability of ending in the accepting state, starting from state i of B. Observe

that

xi = Bi;m+2 +
X
k

Bi;kxk:

As in [19], note that this can be rewritten as

(D � I)X = �C

where X is the column vector (x1; : : : ; xm), D is the upper left m �m submatrix of B, and C is

the column vector consisting of the top m elements of column m+2 of B. Furthermore, since B is

a Markov chain with two absorbing states, D � I is invertible (see, e.g., [23, Lemma III.4.1]). Let
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E1 = 2(D� I), and let E2 be equal to E1, except with column 1 replaced by 2C. Then E1 and E2

are integer matrices constructible from x via an FNL reduction, and (D � I)X = �C if and only

if E1X = �2C. By Cramer's rule, x1 is equal to DET(E2)/DET(E1).

That is, x is in A i� x1 >
1
2 i� 2DET(E2) - DET(E1) > 0.

Since DET is in GapL, the function f taking matricesM1;M2 as input, such that f(M1;M2) =

2DET(M2)� DET(M1) is clearly also in GapL. Thus the set f(M1;M2) : f(M1;M2) > 0g is in

PL(poly). We have shown that every set in PL is �FNL
m -reducible to this set. The result now follows

from Theorem 5.

The proof given above makes it clear that the result \PL = PL(poly)" relativizes using the

appropriate notion of \relativized PL." (This was not so clear from the proof in [27].) We will need

this fact in later sections. First, however, we must de�ne what is meant by \relativized PL."

The question of what is an appropriate (or even meaningful) way to provide space-bounded

machines with an oracle has been the subject of some debate. For a discussion of some of the issues

involved and a list of references, see [1]. It turns out that a simple and useful notion of relativization

is the so-called Ruzzo-Simon-Tompa relativization [39]; brie
y, using this notion of relativization,

a set is in PLA if there is a probabilistic logspace machine M with an oracle tape and query states

(as is usual in the de�nition of oracle Turing machines) along with the restriction that the machine

act deterministically when it is writing on its oracle tape. Note that this forces the property that

each query that can be asked during a computation on input x is described completely by x and by

M 's con�guration when the query starts to be written. In particular, only a polynomial number of

queries can possibly be asked over all of M 's computations on x.

Corollary 7 For any set S, PLS = PL(poly)S.

Proof. In the proof of Theorem 6, the FNL reduction to a set in PL(poly) is replaced by a

FNLS reduction to the same set; namely, the transitions in the Markov chain denote the transition

probabilities in the relativized computation. These can clearly be computed using an oracle for S.

The proof of Theorem 5 also clearly carries over to the relativized setting. That is, if A is

reducible to B 2 PL(poly)S via an FNLS reduction, then A 2 PL(poly)S .

It is worth observing that a proof essentially identical to the proof of Theorem 5 shows the

following:

Theorem 8 PLNL = PL.
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4 Closure Properties of GapL and PL

One way of interpreting the results of the previous section is that PL is the class of languages that

are reducible to the high-order bit of a #L function. In this section, we will improve this, to show

that PL is the class of languages that are reducible to any of the high-order O(logn) bits of a #L

function. Along the way, we will establish some closure properties of PL and of GapL.

The following theorem and its proof are logspace-analogues of results concerning GapP that

were proved in [17].

Theorem 9 Let f be any function in GapL.

1. Let g be a function in FL. Then f(g(�)) is in GapL.

2.
Pjxjc

i=0 f(x; i) is in GapL.

3.
Qjxjc

i=0 f(x; i) is in GapL.

4. Let g be a function in FL such that g(x) = O(1). Then
�f(x)
g(x)

�
is in GapL.

Proof. The proofs of the �rst three closure properties may be taken essentially word-for-word from

[17].

For the fourth closure property, observe, as in [17] that if f is the di�erence of two #L functions

h and h0, then  
f(x)

g(x)

!
=

g(x)X
i=0

(�1)i
 
h(x) + i

i

! 
h0(x) + 1

g(x)� i

!
:

The result now follows from the �rst three closure properties and from [14, Lemma 2], where it is

shown that if a is in #L and b is in FL with b(x) = O(1), then
�a(x)
b(x)

�
is in GapL.

A logspace conjunctive truth-table reduction of one set A to another set B (denoted A �log
ctt B)

is a logspace-computable function f(x) = y1; : : : ; yr for some r such that x is in A if and only if all

of the yi are in B. Logspace disjunctive truth-table reductions (�log
dtt) are de�ned similarly, with

\all" replaced by \at least one." For more formal de�nitions, see [30].

Corollary 10 PL is closed under �log
ctt and �log

dtt reductions. (In particular, PL is closed under

intersection and union.)

Proof. We present the proof for �log
ctt reductions. The proof of the other claim is analogous. Let

C �log
ctt B via a reduction g, so that x 2 C i� 8i � nc g(x; i) 2 B. Let h be the GapL function

such that h(y) > 0 if y 2 B, and h(y) < 0 otherwise. Let H(x; i) denote h(g(x; i)).
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The de�nition of the following sequence of polynomials follows the presentation in Section 2 of

[13]. De�ne
P+(x; i) =

[(H(x; i)� 1)
Qnk

j=1(H(x; i)� 2j)2]2dc logne+1

P�(x; i) =

[(�H(x; i)� 1)
Qnk

j=1(�H(x; i)� 2j)2]2dc logne+1

N(x; i) = P�(x; i)� P+(x; i)
D(x; i) = P�(x; i) + P+(x; i)

S(x; i) = N(x;i)
D(x;i)

A(x) = (
Pnc

i=1 S(x; i))� (nc � 1)
A0(x) =

(
ncY
i=1

(D(x; i)))(
ncX
i=1

(N(x; i)
Y
l6=i

D(x; l)))

�(
ncY
i=1

(D(x; i)))2(nc � 1)

S(x; i) is equivalent to the function that is called S
(nc)
nk (H(x; i)) in [13]; it is proved there that A(x)

is positive if all of the H(x; i) are positive, and A(x) is negative otherwise. Observe that A0(x) is

positive if and only if A(x) is, and note also that A0 may be seen to be in GapL because of the

closure properties established above. This shows that C 2 PL.

Corollary 10 can be strengthened by de�ning �FNL
ctt and �FNL

dtt reductions in the obvious way. It

su�ces to notice that, by Theorem 5, the function H(x; i) = h(g(x; i)) is in GapL, if g 2 FNL. This

shows:

Corollary 11 PL is closed under �FNL
ctt and �FNL

dtt reductions.

Corollary 12 Language A is in PL if and only if there is a logspace-computable function b(x) =

O(log jxj) and a GapL function f such that [x 2 A if and only if the high-order b(x)-th bit of f(x)

is 1].

Proof. The forward direction is obvious from the foregoing, with b(x) = 1.

For the converse, note that the language B = f(x; y) : y � f(x)g is in PL (since (x; y) 2 B i�

the GapL function f(x)� y � 0). Thus the language C = f(z; x; y) : z � f(x) � yg is also in PL,

by Corollary 10. Let u1; u2; : : : ; ur be the 2b(x)�1 strings of length (b(x)� 1), and note that x is

in A i�
W
i ui10

nk�b(x) � f(x) � ui11
nk�b(x). By corollary 10, A is in PL. (This proof is essentially

identical to the proof of the analogous result for time-bounded classes, as presented in [37].)
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5 Exact Counting in Logspace

In this section, we introduce the class C=L as the logspace-analog of the class C=P. We do this

in order to characterize the complexity of the class of singular matrices, which is arguably a much

more natural problem than the complete sets for PL that have been presented above. The set of

integer matrices with determinant zero is a natural complete set for C=L.

First, we need to present some de�nitions.

De�nition 2 C=L is the class of languages A for which there is a function g 2 GapL such that

x 2 A i� g(x) = 0.

As is the case with C=P [46], there are several equivalent ways of de�ning C=L.

Proposition 13 The following are equivalent:

1. A 2 C=L.

2. There is a function f 2 FL and a function g 2 GapL such that x 2 A i� f(x) = g(x).

3. There is a function f 2 FL and a function g 2 #L such that x 2 A i� f(x) = g(x).

4. There is a probabilistic polynomial-time logspace-bounded machine such that x 2 A i� the

probability of accepting is exactly 1
2 .

Proof. ((1) =) (4)) Let A 2 C=L, and let g be the GapL function such that x 2 A i� g(x) = 0.

Let f1 and f2 be #L functions such that g(x) = f1(x) � f2(x). Let p be a polynomial, and let

M1 and M2 be nondeterministic machines realizing f1 and f2, respectively, where each of M1 and

M2 
ip exactly p(jxj) coins along every computation path. (I.e., M1 can be constructed from an

arbitrary machine M realizing f1 by having M1 simulateM until M halts (using coins to simulate

M 's nondeterministic steps), and then accepting i� all remaining coin 
ips are heads.)

Let M3 be the machine that 
ips p(n) + 1 coins, simulating M1 if the �rst coin 
ip is heads,

and if the �rst coin 
ip is tails simulatingM2 and accepting i� M2 rejects.

It is easy to verify that, out of the 2p(jxj)+1 probabilistic sequences, exactly f1(x)+(2
p(jxj)�f2(x))

are accepting. This number is 1
2 i� g(x) = 0.

((4) =) (3)) and ((3) =) (2)) are obvious.

For ((2) =) (1)), let f and g be the functions in FL and GapL, respectively, de�ning language

A. Note that g � f is in GapL, and x 2 A i� g(x)� f(x) = 0.

10



Theorem 14 The set of all singular integer matrices is complete for C=L under �log
m reductions.

Proof. The proof is immediate from Theorem 1.

More generally, the set f(A; r) : the determinant of matrix A is rg is complete for C=L, just

as the set f(A; r) : the determinant of matrix A is � rg is complete for PL. (For analogous results

concerning C=P, see [40].)

Note that NL is contained in C=L. (This is because NL is closed under complement, and

membership in a coNL set is equivalent to having zero accepting computations.) Furthermore, a

proof essentially identical to the proof of Theorem 5 shows:

Theorem 15 C=L
NL = C=L.

Theorem 16 C=L is closed under �FNL
m -reductions.

Proposition 17 C=L is closed under �FNL
dtt and �FNL

ctt reductions. (In particular, it is closed under

union and intersection.)

Proof. Let A 2 C=L, and let B�FNL
dtt A via reduction f (so x 2 B i� there is an i � nk such that

f(x; i) 2 A. Let A0 be the set of all strings (x; i) such that f(x; i) 2 A. Then A0�FNL
m A; let g be

the GapL function such that (x; i) 2 A0 i� g(x; i) = 0. Then x 2 B i�
Qnk

i=1 g(x; i) = 0: Theorem 9

now shows that B 2 C=L.

Similarly, if B�FNL
ctt A via reduction f , then x 2 B i�

Pnk

i=1 g(x; i)
2 = 0:

It remains unknown if C=L is closed under complement.

Closure of C=L under �log
dtt reductions is also su�cient to show that C=L contains the class

LogFew that was de�ned and studied in [14]. (We refer the reader to [14] for the de�nition of this

class.)

Theorem 18 LogFew � C=L.

Proof. The de�nition of LogFew makes it clear that if A 2 LogFew, then there is a logspace-

computable function f and a #L function g such that x 2 A i� 9i � jxjc g(x) = f(x; i). Clearly,

then, A is �log
dtt reducible to a set in C=L.

We have one more result that makes mention of C=L. The motivation for this result came not

so much from any question about C=L itself, but rather from a question about the relationship

between #L and GapL. As these classes are de�ned, it is obvious that #L is properly contained
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in GapL, because GapL contains negatively-valued functions. However, if we choose any natural

binary representation of GapL and #L functions (such as sign-magnitude or two's complement,

etc.), it is natural to ask if GapL, viewed as a set of functions from �� to ��, contains any functions

that are not in #L.

Proposition 19 If every function f : �� ! �� in GapL is also in #L, then C=L = NL.

Proof. Let A 2 C=L, and let g be the GapL function that de�nes A. Let g0 = �g2. That is,

x 2 A =) g0(x) = 0, and x 62 A =) g0(x) < 0.

Let f : �� ! N be the function de�ned on the natural numbers so that f(x) is the natural

number whose binary representation is given by the representation of g0(x). (All that we assume

about the the representation chosen for g0 is that zero be represented as a string of zeros.) Then it

follows that x 2 A =) f(x) = 0, and x 62 A =) f(x) > 0. If f 2 #L, then A 2 NL.

6 Reductions to #L and PL

Corollary 12 raises the obvious question of whether the low-order or middle bits of a #L function can

be computed using the power of PL. At present, we see no reason to believe that this is possible; it

seems plausible that �L (i.e., determining the low-order bit of a #L function) is not NC1-reducible

to PL. Any attempt to investigate this question must �rst make precise what it should mean to try

to compute something \using the power of PL."

It is a pleasing fact of complexity theory that most of the \natural" complexity classes can

be de�ned as the class of problems \reducible" to some important problem, where the de�nition

does not depend on the particular notion of reduction that is used. For example, nondeterministic

logspace can be de�ned as the class of problems reducible to transitive closure (or s�t-connectivity)

using any of the notions of reducibility that have been considered (e.g., �log
m , AC0, NC1, �rst-order

projections, etc.).

However, the class of problems reducible to the determinant and to PL seem to be exceptions

to this rule. As an extreme example, consider the class of functions that are logspace many-one

reducible to the determinant; by Theorem 1 this is GapL. The zero-one functions (i.e., languages)

in this class are determined by logspace-bounded nondeterministic Turing machines, where the

number of accepting and rejecting computations di�er by either zero or one; there seems to be no

reason to believe that all of nondeterministic logspace is contained in that class. On the other hand,

it is obvious that nondeterministic logspace can be reduced to the determinant if less restrictive

reductions are used (since all that is required is to check if a #L function is non-zero).
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When Cook [15] considered the class of problems reducible to the determinant, he framed

his de�nition using NC1 reducibility. Alternatively, one could consider the class of things AC0-

reducible to the determinant; we show that this class corresponds to a logspace-analog of the

counting hierarchy. (We do not know if this class is equal to the class considered by Cook, but it

follows easily from the results of this section that if NC1(DET) is equal to AC0(DET), then the

#L Hierarchy we de�ne below collapses at some level.)

The counting hierarchy (see [50, 46]) consists of sets in the classes PP, PPPP, PPPP
PP

, etc. Since

PP is contained in C=P
C=P [46], it follows that the same class of sets results if the hierarchy is

de�ned in terms of C=P instead of PP. One obtains a computationally-equivalent class of functions

if one considers #P, #P#P, etc. Let us now consider the analogous classes de�ned in terms of #L

and PL.

De�nition 3 (The #L Hierarchy) De�ne #LH1 to be #L, and let #LHi+1 be the class of functions

f such that, for some logspace-bounded nondeterministic oracle Turing machine M , and some

function g 2 #LHi, f(x) is the number of accepting computations of M on input x with oracle g.

Let #LH denote
S
i#LHi.

(The PL Hierarchy) De�ne PLH1 to be PL, and let PLHi+1 be the class of languages A such

that, for some logspace-bounded probabilistic oracle Turing machine M , and some language B 2

PLHi, A is the language accepted by M with oracle B (where acceptance is de�ned using the PL

acceptance criterion). Let PLH denote
S
iPLHi.

(The C=L Hierarchy) De�ne C=LH1 to be C=L, and let C=LHi+1 be the class of languages A

such that, for some logspace-bounded probabilistic oracle Turing machine M , and some language

B 2 C=LHi, x 2 A i� M with oracle B accepts x with probability exactly 1
2. Let C=LH denoteS

iC=LHi.

In all of these de�nitions, the \Ruzzo-Simon-Tompa" relativization method is used (cf. Section 3).

We will show that PLH, C=LH, and #LH can be de�ned in terms of AC0 reductions to PL,

C=L, and #L, respectively. An AC0 reduction is a uniform family of constant-depth circuits of

unbounded-fan-in AND and OR gates, NOT gates, and \oracle" gates. If the oracle is a function

f : f0; 1g� ! f0; 1g�, then an oracle gate has some numberm of inputs x1; : : : ; xm and some number

of outputs, representing f(x1; : : : ; xm). If the function f does not always take inputs of length m

to outputs of the same length, then it may be necessary to assume some sort of \end-of-string"

encoding; our theorems do not depend on these details. If the oracle is a language, then the oracle

gate computes the characteristic function of the language. Our results do not depend very much on
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the particular uniformity condition used. Logspace-uniformity is su�cient, although the theorems

also hold if more restrictive uniformity conditions are used; see [12, 10] for discussions of uniformity

issues involved in low-level circuit complexity.

It will turn out to be useful to consider certain re�nements of AC0 reducibility. Following [4]

(see also [6]), de�ne AC0
i (f) to be the class of languages accepted by AC0 circuits with oracle gates

for f , where no path from input to output goes through more than i oracle gates. If C is a class of

functions (languages), then AC0
i (C) is equal to the union over all (characteristic) functions f in C

of AC0
i (f).

Theorem 20 For all i, AC0
i (PL) = PLHi.

Proof. It should be stated at the outset that it has recently been shown by Ogihara that this

entire hierarchy collapses to PL [35]. (�) Any set A 2 PL = PLH1 can be accepted with a single

oracle gate. Thus assume that PLHi � AC0
i (PL), and let A be the language accepted by MB

for some B in PLHi and some probabilistic logspace-bounded oracle Turing machine M . Since M

makes queries using the Ruzzo-Simon-Tompa restriction, there is a list y1; : : : ; ynk computable in

logspace from x such that all queries of M on input x come from the set fy1; : : : ; ynkg. The set

B0 = f(x; i) : yi 2 Bg is also in PLHi � AC0
i (PL). (Without loss of generality, B0 2 AC0

i (C), where

C is the \canonical complete set" for PL: C = f(Y; z) : Y is a transition matrix showing, for all

con�gurations of a logspace-bounded machine, the probability of getting from one con�guration to

another, such that the machine accepts zg.)

The AC0
i+1(C) circuit accepting A consists of AC0

i (C) circuits computing membership of (x; i)

in B0, followed by a layer of AND and OR gates computing the transition matrix Y of M on input

x with oracle answers given by the subcircuits for B0, followed by one more oracle gate, checking if

(Y; x) is in C.

(�) We prove only the induction step (AC0
i (PL) � PLHi implies AC0

i+1(PL) (�) PLHi+1); the

proof for the basis is essentially identical.

Let A be accepted by an AC0
i+1(B) circuit family fCng for some B in PL. We describe the

behavior of a probabilistic oracle machine M accepting A. On input x, M looks at circuit Cn. If

the output gate of Cn is an oracle gate, then M accepts i� y is in B, where y = y1y2 : : : yr is the

word input to the oracle gate. The subcircuit computing each bit yi is an AC0
i (B) circuit, and by

induction hypothesis can be simulated using an oracle from PLHi.

On the other hand, if the output gate is an AND, OR, or NOT gate, then the output of the

circuit can be computed by a constant number of applications of �log
ctt or �

log
dtt reductions to a set
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in PLHi+1. But this also de�nes a set in PLHi+1, by the closure properties established in the

preceding section.

(Alternatively, one may observe that AC0
1(PL) = PL, and that an AC0

i (PL) circuit may be

viewed as consisting of i layers of AC0
1(PL) subcircuits.)

Theorem 21 For all i, C=LHi � AC0
i (C=L) � LC=LHi .3

Proof. The �rst inclusion has a proof essentially identical to the �rst inclusion proved in Theorem

20. The second inclusion is also proved by a proof essentially identical to the proof of Theorem 20,

but since C=L is not known to be closed under complement, we cannot \absorb" any NOT gates,

and thus we obtain only the inclusion LC=LHi .

Theorem 22 #LHi � AC0
i (#L) � L#LHi .

(We remark that #LHi is de�ned as a class of functions, while AC0
i (#L) is de�ned as a class

of languages. Note however that it is quite natural to view a circuit as computing a function;

moreover, it is well-known that the set of functions de�ned in this way is exactly the same as the

set of functions f such that the language f(x; i; b) : bit i of f(x) is bg is in the associated language

class. It follows from the proof below that #LHi is actually equal to the class of functions computed

by AC0
i (#L) circuits, with the added restriction that the output gate be an oracle gate.)

Proof. The �rst inclusion is obvious when i = 1; thus assume the induction hypothesis for

i and let f be in #Lg for some g 2 #LHi. Thus there is some f 0 2 #L such that f(x) =

f 0(x; g(y1); : : : ; g(ynk)), where (as in the proof of the previous theorem) the list of yi's contains all

possible queries that could be asked on input x, and this list can be generated in logspace from x.

Let g0(x; i) = g(yi), and note that g
0 is also in #LHi, and by induction has AC0

i (h) circuits for some

h 2 #L. Let k(0; z) = h(z), and k(1; z) = f 0(z). Our AC0
i+1(k) circuits for f consist of subcircuits

computing g(yi) = k(0; x; i), followed by a gate computing f(x) = k(1; x; g(y1); : : : ; g(ynk)) at the

root.

(We remark that, with a little more e�ort, #LHi functions can be computed by circuits con-

sisting of exactly i #L oracle gates, where the outputs of one gate feed directly into the gate on

the next layer.)

The proof of the second inclusion is quite similar to the proof of the forward inclusion in the

preceding theorem.

3Note that this corrects a mis-statement in the version of this paper that appeared in Proc. 9th IEEE Structure
in Complexity Theory Conference, 1994. It is also worth noting that it has recently been shown that this entire
hieararchy collapses to LC=L [2].
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Corollary 23 � #LH = AC0(#L) = AC0(DET)

� PLH = AC0(PL)

� C=LH = AC0(C=L)

(Part 2 of this corollary was previously observed by Carsten Damm and Peter Rossmanith [24, 38].)

The reader should not be alarmed by the fact that LPL is contained in AC0(PL) (and in fact

the containment may even be proper), even though AC0 is properly contained in L; we refer the

reader to the discussion in [51, 52].

Some of the motivation for this study came from the question of whether or not L#L = LDET

= LPL, by analogy to the equalities that are known to hold for the related classes #P and PP. The

reader should be able to see that L#L and LDET are indeed equal and contain LPL, but we do not

see how to compute the low-order or middle bits of a #L function in LPL or even in NC1(PL).

A related question is whether PLH is equal to C=LH (equivalently, whether PL is AC0-reducible

to C=L).

We close this section with an observation showing that L#L can be de�ned using very restricted

access to the oracle. (For related observations, see [5, Proposition 2 and Section 6].)

Proposition 24 Let C be any of the classes L, NL, PL, or #L. Then the class C#L remains

unchanged even when the oracle Turing machines de�ning the class are restricted to make at most

one query to the oracle, and to read the answer just once from left to right.

Proof. Let an oracle Turing machine M be given, and let the oracle be the function g. Let the

run time of M be nk , let the possible queries on an input x of length n be contained in the set

fh(x; 1); : : : ; h(x; nl)g (where h is logspace-computable), and let the number of bits in g(y) be jyjc
0

.

Let c be greater than k and c0.

Then the function f de�ned by

nkX
j=0

nlX
i=1

(g(h(x; i))+ 2jyij
c
0
+1)2(jn

l+i)nc

is in #L.

Note that f(x), viewed as a binary string, consists of nk repetitions of a string containing nl

�elds, where each �eld is of length nc, consisting of leading zeros, followed by a one, followed by

the encoding of g(yi) for some query yi that could be asked on input x. If a machine asks the query

f(x) at the beginning of its computation, then it can simulate M on input x, moving one block to
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the right for each step of M that is simulated, and keeping track of which cell of M 's oracle tape

is being scanned at any particular moment.

7 Conclusion

By making use of recent theorems relating #L and the determinant, we have given simpli�ed proofs

of some facts concerning PL, and we have proved new results concerning the classes of sets reducible

to PL and to the determinant. A number of open questions remain. Among them:

� What closure properties can be established for #L and GapL? In regard to this question, it

is appropriate to mention that GapL can be characterized as the class of functions computed

by \skew" arithmetic circuits [45]. Related results regarding arithmetic circuits and certain

subclasses of TC1 may be found in [3].

� Can any relationship be established between PL or #L and AC1 (or logCFL)?

� Can any any relationship be established between PL (or C=L) and bounded-error probabilistic

logspace? Note in this regard that David Zuckerman and Mauricio Karchmer have recently

shown that no \black-box" simulation of PL can yield a bounded-error probabilistic logspace

algorithm for PL [54].

� Can anything more be said about the relationship between PLH and NC1(PL) (or #LH and

NC1(#L))? Note that for many classes C of interest (including ACk, NCk, NL, L, NP [4, 34]),

AC0(C) is equal to NC1(C).
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